Creating CorkSport Parts with 3D Scanning

While creating a new CorkSport part, we sometimes run into issues where calipers, bore gauges, and angle finders are simply not enough to get the measurements we need.  We’ve discussed how we use 3D printing in a previous blog, but today I thought I’d go over the opposite: 3D scanning.

Where 3D printing takes a CAD design from computer to physical part, 3D scanning takes a physical part and converts it into a computerized model. This is especially useful for things like intercooler piping, intake design, and even creating exterior body parts. What these components all have in common is that they are a complex, difficult to measure, shape where fitment is critical. Check out the 3D scan below from the development of our GEN2 Mazdaspeed 3 front lip. While not a perfect replica, this 3D scan information was vital for designing the CS front lip to ensure great fitment and stylish look.

At CorkSport, we do have a small 3D measuring arm that can take measurements of 3D objects and input them directly into a CAD program. The arm does this by first having a “home” position established that the arm can measure from. Then as the arm is moved around, it knows how far the tip of the arm is from the home position in x, y, and z coordinates. This is a very basic form of 3D measurement as the arm must actually touch the surfaces of the part. Mostly simple information like mounting surface locations, angles, and hole sizes can result from this arm. While not a full 3D scan, it is especially useful for things like the GEN3 Transmission Motor Mount that have mounting planes at different angles.

For intercooler piping with completely round surfaces and bends, CorkSport’s 3D measuring arm has its limitations. We typically get a full 3D scan performed on the OEM piping to give us solid locations and a great visual reference to design from. The 3D scanning arm bounces a laser off the part to determine its shape and size. Then, software that accompanies the 3D scanner stitches all the information together into a full 3D CAD model. The scans achieve great accuracy; check out the embossed writing and even texture on this OEM intercooler piping for the SkyActiv 2.5T.

From this point, we design the new CorkSport parts. In terms of intercooler piping, we analyze where the larger piping will fit to get the performance gains we want. In some cases, we can also simplify the pipe routing to get smoother airflow than the OEM piping. Having a full OEM piping scan makes this much easier as we can easily double check our measurements with the OEM parts on the car. As a result, our first 3D print can often be the final version before having metal parts made. An early design for an upgraded Mazda 6 SkyActiv 2.5T hot pipe is shown below (blue) with the OEM part scan (gray). The routing was carefully chosen to achieve our desired piping size within the constraints of the OEM engine bay.

 

3D scanning has a huge range of uses and we are just beginning to explore the full capabilities. Be sure to share your ideas on how we should use this technology and what new CS parts we should make with 3D scanning’s help!

-Daniel

Mazda’s Dynamic Pressure Turbo – A Closer Look

There has been a lot of buzz about the new(ish) turbocharged SkyActiv-G 2.5L first found in the Mazda CX-9 and now in the Mazda 6.  Along with all this buzz, there are a lot of unknowns as well. Here at CorkSport, we’ve taken the step to try and address some of these unknowns.  What is Mazda’s “Dynamic Pressure Turbo” and how does it work? There have been diagrams bouncing around on the internet, but no close-up view of the turbocharger itself.  That’s about to change.

If you haven’t already read Daniel’s first installment, “Mazda Dynamic PressureTurbo an Introduction.” You wouldn’t want to miss out on the extra information before reading on.

The turbocharger found in the 2.5T equipped CX-9 and 6 is quite complex in design.  There are many aspects to the OE turbocharger we could discuss, but today we are going to focus solely on the dynamic pressure system and turbine housing.  

If you are reading this, then you’ve probably already seen various diagrams depicting how the dynamic pressure system works and showing Mazda’s clever 3-2-1 exhaust port design.  If you haven’t, check it out below.  Image credit to Car And Driver Magazine for the fantastic diagram.  

Mazda’s 3-2-1 exhaust port design takes full advantage of the engine cylinder firing order.  The advantage is improved exhaust gas scavenging for the adjacent cylinder (more or less the cylinder that just fired helps pull the exhaust gases out of the next cylinder that is about to fire).  Ok moving on; this is great, but how does the dynamic pressure system come into the mix?

Shown here are the turbocharger assembly and the dynamic pressure valve assembled as one unit (the first two images also showed the fully assembled setup).  The three ports are clearly visible along with the “vane” that passes through the three ports. This vane rotates depending on engine RPM to control the exhaust gas velocity entering the turbine housing.  The vane itself is controlled by the larger blue colored actuator.

Now let’s take an even closer look.  The vane does not open until approximately 1600rpm, but the engine could not run of no exhaust gas can flow out of the engine.  To resolve this Mazda has designed the dynamic pressure system with two exhaust gas paths.  Looking at the above image you can see a small opening just above the vane. This is the sub-1600rpm exhaust gas path.  

By reducing the cross-sectional area of the exhaust gas path, the exhaust is forced to accelerate through the dynamic pressure system and into the turbine wheel.  This effectively reduces turbo lag, improving the vehicle’s response at low engine RPM. Once the engine revs past 1600rpm the vane opens, allowing the larger path to be used.   

Here we show the turbocharger assembly (right) and the dynamic pressure valve assembly (left) separated.  Looking at the dynamic pressure valve assembly, you can now more clearly see the three small paths above the larger path with the vane inside.  Then look at the turbocharger assembly and you will see the small upper path and the larger lower path.

The fact that these two assemblies are separate systems is great news for the enthusiast.  The development of a performance turbocharger will be much more feasible and the dynamic pressure valve can be retained with the performance turbocharger.  One more detail to point out.

Mazda put a lot of thought into the design of the wastegate port; let me show you why.  First, looking at the inlet of the turbine housing you can see a small vertical wall in the large path.  This wall creates a completely separate path to the wastegate port which is very unusual on an OE turbocharger. Combine this design with a very large wastegate port and you get a design that can “waste” or divert an excessive amount of exhaust gas.

This tells us the SkyActiv-G 2.5L engine is creating a lot of (currently) unused exhaust gas energy.  Again this supports the feasibility of a performance turbocharger suiting Mazda’s new turbo engine quite well.  

Great things are on the horizon for the 6, now if only Mazda would put this engine in the 3 paired with a 6-speed manual transmission.  Oh, one can dream.

-Barett @ CS

Mazda’s Dynamic Pressure Turbo – An Introduction

The SkyActiv 2.5T has been around for a few years in the CX-9 however, things started to get interesting when the engine was dropped in the Mazda 6 for 2018. While lacking a manual and not a true Mazdaspeed, it’s a step in the right direction for the enthusiast. With one of the new Mazda 6s in the CorkSport garage, we’ve been getting curious about where all of that 310lb-ft comes from. Well we decided to call up Mazda and purchase a turbo to see how it all works.

There’s a lot to take in on the turbocharger and there are quite a few things that have changed from the K04 that made its home in the Speeds.

For starters, this turbocharger is pretty big. The wheels themselves are not large, with the compressor wheel very close in size to the old K04 & the turbine wheel only slightly larger than the K04. However, with the dual inlet turbine housing, 90° compressor outlet, and lots of attached electronics, the whole package takes up a lot of room in your engine bay.

The turbine housing is not far from the old K04. A large five-bolt inlet flange has two rectangular inlets to work with the dynamic pressure system (more on that later) and even a port where the EGR system sources its exhaust gases. The outlet is much simpler, using a five-bolt flange to mount to the downpipe, yet does house a surprisingly large wastegate port.

From a performance standpoint, the large wastegate should help eliminate boost creep but the turbine housing will likely need a larger scroll to get some more serious power out of the engine.

The compressor side is packed full of features. As usual, the wastegate actuator bolts to the compressor housing, however, Mazda has switched to an electric actuator. Interestingly, the bypass valve is also electric and is even mounted to the face of the compressor housing.

Some fancy casting design leaves a pathway between the high and low-pressure sides of the compressor and lets the BPV decide when the passage is open or closed. These two electric actuators will mean easy and consistent boost control. The final plastic component on the housing we believe is a boost assisted vacuum source for the vehicle. Finally, the inlet is a typical clamp connection while the outlet uses a 90° turn and two-bolt flange for better accessibility around the wastegate actuator.

With the housings removed, the CHRA of the dynamic pressure turbo is very simple & standard. Oil feed in the top, two-bolt oil drain in the bottom, and standard crossflow engine coolant ports. The compressor wheel is a cast 6×6 unit and turbine wheel is a basic 11 blade unit.

We are looking forward to waking up the Sky-T in the coming months and making the 2018+ MZ6 into something a little closer to a Speed. Stayed tuned, there’s much more fun to be had from the 2.5T!

-Daniel

All About That CatBack Exhaust

Mazda Catback Exhaust Installed

Ever wondered the key factors of making a decision about your aftermarket exhaust? Why Cat-back? 

Is it the diameter of the exhaust that says performance? Or is it the type of metal used? What about fitment to your current setup? None of these questions by themselves answer what you need by themselves, but all of them together help when making the decision on how to get more power out of your Mazda.

At CorkSport, we have made it our #1 priority to make our customers dreams a reality. Whether you drive a Mazdaspeed or a regular Mazda, we’ve made sure to engineer a great fitting exhaust that maximizes engine performance.

Check out the Cat-Back Exhausts by Car Model Below:

Take the Mazdaspeed 3 for example: When you purchase a CorkSport Catback Exhaust, you’re getting T304 stainless steel piping that has been polished to a mirror-like finish.

You’re also getting true 80mm piping, which is slightly bigger than three inches, making our exhaust one of the biggest bolt on catback systems.

Fitment is also a big concern to us. We make sure our exhaust systems are mandrel bent and TIG welded to make a perfect bolt-on fitment.

Mazda 6 Power Series Exhaust

Now that you know our exhaust is 80mm piping, polished to perfection, and made to be a direct fitment, you can bet this exhaust will increase performance and sound. By installing our cat-back exhaust, you’re removing the secondary unmonitored catalyst making the exhaust flow much faster out of the motor. By increasing the velocity of exhaust gases out of the motor, you increase power and make your turbo spool up a little bit faster.

Among the power gains you’ll see from installing the CorkSport Catback Exhaust, you’ll also have a car with a deep growl to it. Our exhaust has one of the best sounding tones on the market. With a quality made exhaust, comes quality sound.

When find yourself ready for a cat-back exhaust, be sure to check out CorkSport to ensure you get the highest quality for your ride.

 

CorkSport Cat Back Exhaust for CX-9

Time to bring some CS love to those who need some more space than what a hot hatch can offer. Introducing the CorkSport Power Series Cat-Back Exhaust for 2016+ Mazda CX-9 AWD.

The CX-9 has great potential with its turbocharged 2.5L engine but it is bottlenecked by the small stock exhaust. The CorkSport catback ups the exhaust diameter to 80mm (from the OE 60mm) and utilizes high flow pass-through resonators to really help that turbo breathe better.

To go with the better performance, the CorkSport cat-back also looks great. Made from CNC bent, fully polished, T-304 stainless steel, it’s definitely an attention grabber that will stay looking great for years to come. The dual exhaust tips were upgraded to 100mm outer diameter and extended to really fill out the bumper cutouts. Don’t worry though; the tips are noticeable without being obnoxious and detracting from the clean look of Mazda’s Kodo design philosophy.

Last but certainly not least: the sound. The upgraded piping diameter and less restrictive resonators combine to create a sound that is certainly louder and more pleasant than stock without being unbearable for the daily commute. You hear the exhaust when you want to but it quiets down while cruising and does not drone. As a final bonus, you get a little taste of turbo noise as it spools up. Check out the video down below to hear a comparison between the CS CX9 cat-back and the OE exhaust for yourself.

All of these benefits come with the same CorkSport quality and customer service that you all have grown accustomed to. This means OE style fitment that retains all existing exhaust hangers and oxygen sensors since no one likes a check engine light.

Whether you have moved on from a Mazdaspeed but miss the sound or just want to spice up your grocery getter with a little extra noise, the CorkSport Mazda CX-9 cat back is an upgrade that hits all the right notes. Check out the product listing for full details.

 

Want more for your CX-9? There may be a few more things coming down the pipeline, but submitting a product idea helps us to know what you’re looking for!