OEM Part Breakdown: 2.5L Skyactiv-G Exhaust Header

Analyzing an OEM part is usually our first step in creating a new performance part. We’ve been looking at the Mazda 2.5l SkyActiv-G Exhaust Header, and I wanted to bring you all along for the ride. It’s surprisingly complex for an OEM manifold/header and some serious engineering went into it.

If you’ve been paying attention to the CorkSport channels, you may have seen rumors here and there of a race header for the GEN3 Mazda 3 and Mazda 6 2.5L. While I can’t say too much on that just yet, but I can give you a breakdown of the OEM exhaust header that’s hiding in the back of your engine bay.

The OEM Exhaust Header

Stock Gen 3 Mazda 3 Exhaust Header
Stock Gen 3 Mazda 3 Exhaust Header

Excuse the dirty part, as this OEM header has had a hard life! I imagine many of you have not seen the stock header as it’s in the back of your engine bay surrounded by heat shields. Taking the heat shields off gives us a glimpse of the craziness that is the stock header. Mazda has gone with a true 4-2-1 design (also known as tri-y) with an integrated catalytic converter and what appears to be equal length runners. Stay with me, I’ll explain what all that means.

SkyActiv-G Exhaust Manifold Flow Path
Exhaust Flow Path

The image above hopefully helps you visualize the 4-2-1 design. Starting at the engine, there are four exhaust ports from the head. Each exhaust port gets its own pipe, known as a “primary”. The primaries then pair together to form two “secondaries”. Finally, the two secondaries combine into one collector pipe, in this case heading directly into the catalytic converter. The three unions or “y’s” are where the tri-y name comes from. The 4-2-1 design was chosen by Mazda for a very specific reason. Check out the image below and Mazda’s explanation HERE.

Mazda SkyActiv-G Exhaust Chart
Residual gas reduction by 4-2-1 exhaust system – From Mazda.com

Essentially, using a very high compression ratio causes very high exhaust gas temperatures. If too much of this exhaust gas is leftover in the cylinders for the next combustion cycle, knocking can occur. In addition, if you have a short 4-1 header or a log-style manifold you can suck exhaust gas into a cylinder before combustion as one cylinder can be on an intake stroke while another is on an exhaust stroke (see the upper image in Mazda’s diagram).

OEM Design Efficiency

The 4-2-1 has two benefits to fight this. First, the long length means the exhaust gas takes longer to traverse the pipes, so one cylinder sucking in another’s exhaust is drastically reduced. Second, the cylinders are paired correctly to one another (1 with 4 and 2 with 3). Since the firing order is 1-3-4-2, each secondary is receiving an exhaust pulse at a regular interval. If you paired 1 with 3 for example, you would receive two pulses quickly, and then a large gap as the other two cylinders fired. This helps with exhaust scavenging as the pulse from one cylinder helps “pull” the leftover exhaust from the cylinder it’s paired with. These benefits can also be present on a long tube 4-1 if designed well but, there is a good reason why Mazda did not choose this option.


2.5L Skyactiv-G
2.5L Skyactiv-G

Typically a well-designed 4-2-1 will make more power and torque in the midrange while a well-designed 4-1 will make more power way up at the top of the RPM range. Since normal driving does not involve being at the top of the RPM range all the time, it makes sense that Mazda went with the 4-2-1. We will likely do the same as we want to retain the low knock characteristics of the 4-2-1, high midrange power & torque, and because the SkyActive 2.5L is a fairly low revving engine.

OEM Exhaust Header 4-2-1 Design
OEM Exhaust Header 4-2-1 Design

It appears that Mazda also went with close to equal length runners. This means that each primary section is the same length and each secondary section is the same length. Having equal length runners ensures the exhaust pulses are arriving at the collector (or Y) at uniform intervals.

The easiest way to explain why this is a good thing is by visualizing the entrance ramp to a highway.  When cars entering the highway follow the “zipper” method for merging, the cars currently on the highway do not need to slow down. The highway and entrance ramp merge and flow in a smooth and consistent rate. However, if a surge of cars come down the entrance ramp to merge onto the highway you will get a back-up of cars on the entrance ramp and will disrupt the flow of cars on the highway.  If the cars are exhaust gases and the highway is the exhaust pipe, you can understand why equal length can help. Again, we will adopt this strategy with the CorkSport Race Header.

So far so good then, as Mazda has put a lot of thought into making a high-quality stock header. However, as usual, there are a few areas we can improve on. That’s coming in a later blog though so you’ll have to stay tuned for more details! Let us know if you have any questions or thoughts down below.

-Daniel @ CorkSport

SkyActiv 2.5T Cold Side Boost Tube Part 2: Testing

In case you missed it, we have been working on improving the flimsy rubber tube that comes stock on the cold side of your 2018+ Mazda 6 2.5T. Check out the first part on the cold side boost tube here and the full OEM piping & intercooler breakdown here. Since our last installment, we have been busy testing a prototype CorkSport Boost Tube and would like to share some results with you all.

Testing Results

SkyActiv 2.5T Boost Tube
CorkSport SkyActiv 2.5T Boost Tube

Starting off we tested and data logged both the OEM tube and CorkSport Performance Boost Tube on the dyno. We were not expecting to see too much of a difference to power with just the boost tube changing however, we did see tiny improvements here and there, most notably way up at the top of the RPM range.

Check out the graph below, (OEM: red, CS: green). We tested on the same day in identical conditions and the car had a CorkSport Intake and Cat Back Exhaust installed for both tests.

PLEASE NOTE: the variations below 2800RPM are due to inconsistencies associated with dyno testing an automatic car.

SkyActiv 2.5T Boost Tube Performance Dyno

After noticing these changes, we went to the data logs to see how the boost changed between the OEM tube and the CS Boost Tube. The graph below shows the engine RPM versus the manifold pressure in psi. Both lines have the same smoothing done to the raw data. As you can see, the CorkSport tube (green) holds about 0.5psi through the midrange (3500-5000RPM) and is almost 1psi more when above 5500RPM. This correlates well with what we saw while dyno testing.

SkyActiv 2.5T Boost Tube Manifold Pressure Test

Testing the Changes

The small increase in boost pressure is likely due to the CorkSport tube not expanding as much when under pressure. To confirm this, we capped off both ends and pressurized the each tube to 20psi. Note: do not try this at home as the caps can easily fly off and injure you.

Boost Tube being tested

After measuring multiple locations both before and during pressurization, we found that the OEM tube expands about 12% in internal cross-sectional area while the CorkSport Boost Tube expands 3x less at 4%. Keep in mind that this would be an even larger difference if the same test was performed with the tubes installed on the car due to the heat of the engine bay. Since silicone is more stable than rubber at high temperatures, the heat of the engine bay will not soften it nearly as much as the rubber OEM boost tube. A softer rubber tube would mean even more expansion when pressurized and even more inconsistent boost pressures.

CorkSport and OEM Boost Tube Comparison
CorkSport Boost Tube (left) & OEM Boost Tube (right)

This data may not show drastic changes but it does not tell the whole story. The larger diameter and thus larger volume of boosted air of the CS tube provides a little bit better response when low in the RPM range. While this may just be a placebo effect on our end, there’s not too much of a wait before you can try it yourself! Stay tuned for more information. If you want a more serious upgrade though, keep your eyes out for information on the upcoming CorkSport FMIC kit and Piping Upgrade kit!

P.S. 2016+ Mazda CX-9 owners and future Mazda CX-5 2.5T owners, don’t worry we will be checking this for fitment along with other CS goodies!

-Daniel @ CorkSport

2018+ Mazda 6 2.5T OEM Intercooler & Piping Analysis

We’ve already mentioned briefly that we have an upgraded intercooler kit in the works for the SkyActiv 2.5T, but now it’s officially time to dive in and get into how and why an upgraded intercooler kit is a good fit for your 6. To understand how to make a performance part, we first have to understand what makes the stock parts tick and where we can improve them, which is what we will be covering today!

For those of you that are new to the boosted lifestyle, I feel that I should go over a few terms that will be thrown around frequently later in this blog.

  • Hot Side Piping: Also known as just “hot side” or “hot pipes” this piping section carries the pressurized air (boost!) from the turbocharger to the intercooler. As it is before the intercooler, the air has not been cooled and the “hot” name is quite accurate (think 200-250°F. or even more on a turbo that’s too small). Shown above on the right side.

  • Intercooler: A basic heat exchanger. Air flows through the inside and is cooled by air flowing through the outside while you drive down the road. The same way a radiator works except with air inside instead of coolant. It is made up of three parts the “end tanks” and the “core”. The end tanks are what transfer the air from the piping to the core while the core is the actual heat exchanging portion. Shown front and center in the above image.

  • Cold Side Piping: Also known as just “cold side” or “cold pipes” this piping section carries the pressurized air from the intercooler to the engine. As it is after the intercooler, the air has been cooled to make more power. Shown above on the left side.

 

Now into the details…

The hot side piping must make its way all the way from the rear of the engine to the front of the car. The OEM piping takes a pretty direct route, and is a decent diameter for stock piping, starting & finishing at just under 2” inner diameter. This, however, is where the good things end.

To start, the two rubber sections of the hot side are single ply. These allow for good flexibility on install and to allow for engine movement but will start to expand on higher than stock boost levels, increasing boost lag and decreasing throttle response. In the image above, the main rubber section squishes under the small weight of the upper plastic section of the hot pipe. This isn’t even the main issue with the hot side piping!

The upper plastic section of the hot side has quite a few small radius bends, and a few areas where the pipe reduces in diameter severely, affecting the maximum flow and restricting the power of your 2.5T. Check out the worst area below, it’s tiny!

And what might be causing this reduction in diameter you may ask?

That’s right, its clearance for a hose clamp. Mazda, I’ve got to call you out on this one, couldn’t you have just rotated the clamp, and kept the diameter in the pipe? Anyways, on to the intercooler itself.

The intercooler itself isn’t too bad, a decent sized core with lots of fins to help cool as good as it can. That being said, there’s still plenty of room for improvements. First: make it bigger. The intercooler mounting could’ve been simplified to get more width, and there’s a bunch of room to go thicker. While thick is not the best for heat transfer efficiency, it will still help cool off the air better. Height is already more or less maxed out without cutting up the crash beam, but we should be able to make enough extra volume elsewhere to make a big difference.

Intercoolers are a delicate balancing act between cooling efficiency and pressure drop. Cores that cool extremely well usually have a larger pressure drop (loss of pressure from inlet to outlet) and vice versa. With the high fin density of the OEM intercooler, we can expect a relatively high-pressure drop (2-4psi would be my rough guess) but pretty good cooling. From early dyno testing on the CorkSport Short Ram Intake, the intercooler does a good job cooling but loses power on back to back dyno runs. I expect that this is the intercooler “heat soaking”. Heatsoak is what happens when an intercooler is undersized or is not getting enough airflow, it heats up and is no longer able to cool the boost off, robbing you of power.

The two images above show the real Achilles heel of the OEM intercooler and what is likely causing the heatsoak issues: the end tank design. Since the charge air enters and exits the core at an upward angle, it’s being directed away from the lower runners of the core. There is a sharp angle that would be hard for the air to turn, meaning the bottom three internal runners (shown with the red box) are likely not actually doing much. So you’ve got intercooler taking up space that is likely not doing much… We aim to fix this.

The cold side of the system is actually pretty good-inner diameter of just under 2.25” on the ends (even larger in the middle) and a short path into the throttle body. We’ve already covered the basics of it when discussing the upcoming CorkSport boost tube HERE. Like with the hot side, the rubber connector is prone to expansion under increased boost levels. While the CorkSport silicone boost tube will still be coming on its own, we plan to offer something even stiffer that is optimized for our upgraded FMIC kit.

Much more information to come in following blogs as we’ve been busy working away on this project. Stay tuned for full details on the upcoming CorkSport FMIC kit, and if you’ve got any questions, leave them down below.

-Daniel @ CorkSport

Welcome to the Gen3 Mazda 3 Suspension Package

Mazda 3

Want to upgrade your suspension system on your Gen3 Mazda3, but don’t want to deal with the headaches that come with lowering springs or coilovers?

Introducing the CorkSport Adjustable Shock/Strut Assembled Package for 2014+ Mazda 3. This truly is a complete package that includes CorkSport lowering springs, CorkSport adjustable shocks/struts, and CorkSport camber plates all assembled and ready to install.

 

 

We’ve discussed before how the CorkSport adjustable shocks and struts are a great compliment to the CorkSport lowering springs. Now we have included them together in a package with our camber plates to give a huge handling and adjustability upgrade to any Gen3.

In addition, this package comes assembled with new OE dust boots, pivot bearings, and bump stops that are even cut to proper length to match the lower ride height. Since this package comes assembled with new parts, installing it is a snap. No spring compressors needed at any point. Check out the image below to see exactly what you get in every box.

 

 

Whether you are looking to replace some worn out OE components and get a style bonus, or are looking for some and handling and adjustability for your racecar, the CorkSport Adjustable Shock/Strut Assembled Package can help you reach your goal.

An Inside Look at the CorkSport EBCS

We recently came across one of the original CorkSport EBCS prototypes which gave us a perfect opportunity to break it down and give you all an in-depth look. Read on as I go through what makes the CS EBCS tick, and more importantly how it gives you great boost control on your Mazdaspeed.

Just as a refresher before we dive in, an electronic boost control solenoid (EBCS) allows for precise boost control by using an electric solenoid to help control the wastegate. A boost reference travels to the EBCS where it can either push on the wastegate diaphragm or vent to the turbo inlet pipe. Where the air travels is controlled by the solenoid.

Obviously, the specifics change slightly depending on a number of factors with the turbocharger setup, but the concepts remain similar. Since the solenoid is electronic, it can be controlled within a tune. This means you are not wholly controlling your maximum boost with the spring in the wastegate and can hit boost targets larger than the “10psi” spring in your wastegate. For more information on boost control and the different EBCS setups, checkout Barett’s white paper on the subject.

Now the above image is a little different from the way you are usually seeing the CS EBCS. Not only is it missing the sweet black anodized finish (early prototype remember?), it needs some assembly before it can function properly. Below lists the components in the system and a short description of what they do. Obviously, we are missing a few key o-rings to keep everything nice and sealed, but all the important bits are there.

  • Manifold: This is the air distribution block. Air/boost comes in one port and leaves through a different port. Where the air goes is determined by the bullet valve.

  • Bullet Valve Assembly: More on this later, but essentially the center rod (piston) moves in and out while the black portion prevents air from reaching one of the manifold ports as needed.

  • Tension Spring: Keeps the bullet valve in the correct position when the system is not energized.

  • Coil Seat: Ensures the copper coil stays in place so the valve can operate properly.

  • Coil/Windings: Creates a magnetic field when energized that moves center rod of bullet valve.

  • Solenoid Body & Wiring: Contains the coil and other components. Also attaches the valve to the manifold.

Each one of the “thirds” of the bullet valve corresponds to one port on the EBCS manifold. They are labeled accordingly above. As EBCS is energized, the piston of the valve is pulled by the magnetic field created by the windings. There is a small amount of movement; only about 12 thousandths of an inch (0.012”) to be exact, which is enough to allow air to either reach the wastegate diaphragm or pass by into the turbo inlet pipe. Again this is simplified as it does not touch on duty cycle-the valve is typically rapidly opening and closing (seriously, check out the white paper).

The bullet valve is advanced technology that offers the utmost in fast responding fluid control. In addition, its profile offers the ability to make a pressure balanced valve and have a manifold that fits just about anywhere. All of this tech means you end up making boost faster, minimizing boost spikes, and keeping boost creep in check. If you want the best in boost control for your Mazdaspeed, be sure to pick up a CorkSport EBCS.