How to Make A 900 Horsepower Mazdaspeed 3 AWD Swap – CX7 Rear Subframe (Part 3)

Welcome to part 3 of the Mazdaspeed3 AWD Swap! If you missed part 1 and part 2 blog posts, then catch up by visiting these links.   Lots of images in this blog as I get the CX7 rear subframe installed and figure out the correct control arms to use for the rear suspension. 

Typically when I mention the AWD swap Mazdaspeed 3 to a fellow Mazdaspeed enthusiast, they assume I am using the rear subframe from a Mazdaspeed 6.  While I understand their logic, incorporating one would require extensive fabrication.

Here’s why: the Mazdaspeed 6 has a very different chassis architecture vs the Mazdaspeed 3.  It is important to note because it directly affects the subframe and chassis interface.

If it’s not the speed6 then what do I use?  Good news!  The Mazdaspeed 3 uses a chassis design based on a Ford global chassis used with various models in Mazda, Ford, and Volvo.  Enter the Mazda CX7

Mazdaspeed junkyard performance parts
Car AWD Hunt for CX-7 Subframe

So I went hunting for a Turbo AWD CX7 model year 2006-2007…this is a great time to bring your buddies along for some junkyard fun!

Luckily I found one in a local junkyard that was still complete enough.  Not knowing exactly what I needed from the rear-end suspension and drivetrain, I opted to take everything; driveshaft to differential, plus the ENTIRE rear subframe and suspension.

Mazdaspeed awd swap cx7 rear subframe
CX-7 Rear Subframe

$380 later, we are driving home with our newfound treasure and ready to take on the swap! I was eager to see how this would bolt into the Mazdaspeed 3, so we went straight to the shop.  

We wasted no time removing the speed3 rear subframe… literally six bolts and removing the brake calipers is all that is required.

Mazda 3 performance parts awd swap ms3
Mazdaspeed 3 Rear subframe removed
Mazda 3 awd swap performance parts turbo
OEM Fuel Tank

Knowing the OEM fuel tank is in the way of the mid-driveshaft, we opted to just remove it right then as well.  A handful of bolts and some fighting of the fuel tank filler and it’s out also. At this point, we are maybe 1.5 hours into this and the car is ready to accept its fate.

Mazdaspeed fuel tank removal awd swap
OEM Mazdaspeed Fuel Tank Removed
Mazdaspeed 3 no fuel tank under car

With both the MS3 and CX7 rear subframes out and sitting side-by-side, we took the opportunity to compare them. Checking the most important things first, we looked at the mounting points for the subframe to chassis. These all checked out visually and again after measuring to be the same…but this is where the similarities ended.

Mazdaspeed vs cx7 rear subframe on pallet
Comparison of the Mazdaspeed and CX-7 Rear Subframe Side by Side

The trailing arm/hub assembly is very different between the two models.  The CX7 appears to be much heavier duty and more complex.  Doing some research, we found that the CX7 uses a different style of parking brake.  The parking brake is actually a drum brake inside the rotor hat of the disc.  Either way, the CX7 suspension looks heavy…which is not ideal for Racecar. The width also appears to be wider by a few inches.

The last noticeable difference is the addition of a rear differential – which is the whole goal of the project – so that is a good thing! That said, the OEM spare tire location in the MS3 will interfere with the fitment of the differential.

Mazdaspeed 3 under car image no drivetrain

Not an issue for Racecar and my Sawzall!  I cut the entire spare tire tub out since my new fuel cell will be going there.

Mazdaspeed 3 spare tire tub removed
Removed Mazdaspeed Spare Tire Compartment

We are ready to mock up the complete CX7 rear suspension with the spare tire tub removed. Knowing that the mounting points are the same, we installed the entire CX7 system to see how it fit.

mazdaspeed 3 with cx7 rear subframe installed 1

The six mounting points lined up perfectly, confirming our initial measurements – it’s almost as if it was meant to be! Next, we tried to get the trailing arm forward mounting points bolted in but fought them, eventually giving up. We are confident the springs were fighting us, and the trailing arms would have bolted in had we removed the springs.

Mazdaspeed 3 with cx7 rear subframe installed 2
Installing the CX-7 Rear Subframe to the Mazdaspeed

Moving on, we wanted to see how the track width looked before spending any more time on the trailing arms.

Mazdaspeed 3 stance car cx7 width
The Track Width of the New Rear Subframe

As we suspected, the setup was too wide – unless you want wider – which I did not want for a high-speed straight-line drag racer.

Mazdaspeed AWD swap after CX-7 Mazda intall
Ride Height with the Mazda CX-7 Subframe on Mazdaspeed

From the side view, the wheel’s centerline looks good, and the meaty 255/50R16 looks badass, but the CX7 springs obviously do not play nice. The monster truck ride height won’t work.  

We planned a “hybrid” of CX7 and MS3 suspension parts, as advised by a friend, @junkiebuilt, that did a GEN1 AWD swap using a Honda drivetrain. We will use the CX7 subframe only and the MS3 trailing arm/bearing hub and control arms.

mazdaspeed 3 awd swap done the right way

This combo was the ticket!  The Mazdaspeed 3 control arms bolted into the CX7 subframe without issue, allowing me to retain my CorkSport Camber Arms and CorkSport Toe Arms, as well as the lower OEM control arm.  Along with that, I get to keep the Mazdaspeed 3 trailing arm, which is not nearly as heavy or complex.

Mazdaspeed 3 awd correct trailing arm

This setup also retains the OEM parking brake, my Mazda 5 rotor, and my MS3 calipers.  Ultimately this is looking like a very straightforward swap with no fabrication.  Don’t mind @farvaspeed6 looking at, um, something.

With the hybrid CX7/MS3 setup on the car, we wanted to see how things were lining up. The meats went back on!

Mazdaspeed 3 stance race tire
After the hybrid swap track width
After adjustments the Mazdaspeed AWD swap ride height
Mazdaspeed AWD Swap Hybrid Ride Height

Ah, much better this time.  The wider stance is gone, and the wheel tire looks right at home.  Surprisingly the tire tucks under the fender with just a tad amount of rubbing.  

With the day of excitement winding down, I wanted to check on the last thing to see if this truly was a direct bolt-on swap.  Unfortunately, the OEM MS3 rear wheel bearing is not the same as the CX7 wheel bearing.  Being FWD, the MS3 wheel bearing does not have splines for an axle…duh.  So I have to use CX7 wheel bearings on the MS3 trailing arm/hub assembly. 

This is where my luck ended.

awd swap mazdaspeed 3 cx7 wheel gearing

With the MS3 wheel bearing removed and the CX7 wheel bearing set next to the trailing arms…things look good.  But they are ever so slightly different.

awd swap mazdaspeed 3 cx7 wheel gearing 2

The CX7 wheel bearing has a slightly larger bore size, and the bolt pattern is somewhat different. I will never understand why Mazda went through the effort to make these so close but not the same.  Either way, this was not a job a hand drill and grinder could fix.  This needed proper measurements and machining.  

I reverse-engineered the CX7 bolt pattern and hub bore.  3DP printed that to verify then off to the machine shop to get the one-off work done.

CX-7 bolt and hub bore pattern

The existing bolt holes were welded closed, the ground flat, and the new holes were drilled following my measurements.  The hub bore was also enlarged to match the CX7 wheel bearing.

Mazdaspeed 3 awd swap machined trailing arm 1

With that one and only fab job complete, we had actually finished the CX7 to MS3 rear swap. 

Mazdaspeed 3 awd swap machined trailing arm 2

Minus the machining for the wheel bearings, the rear subframe, and the suspension swap was actually very easy and straightforward.  This is great news because it could have been the death (or very expensive aspect) of the swap.  Ultimately this part of the swap being so easy makes it a much more viable project for the average enthusiast. 

Alright, that wraps up the rear subframe swap, a huge milestone for the build.  There are plenty more milestones to overcome and those are coming up in this multi-part blog series!

I hope you are enjoying this series about the AWD Swap Mazdaspeed 3, stay tuned for more blogs to come!

You can also find updates on my IG @halfmilespeed3, the CorkSport 7th Gear Membership, and on mazdaspeeds.org.

Thanks for tuning in!

-Barett @ CS

Connect with us

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

You may also like

See Daniel’s 600+ WHP Mazdaspeed 6 Build Part 1

Hey everyone, this is Daniel, one of the engineers at CS. In case you don’t know me (I’m quiet on socials, but I’m working on that!) I’ve been with CorkSport since the middle of 2017, so I’ve probably had my hands on any product released in the last five years. For example, the exhaust manifold for the Mazdaspeeds was my baby for a while, and I’m still super proud of how it turned out. In this blog, I’ll be going through my Speed 6 build. It has been a long time coming, but it is finally getting close to how I want it!

Mazdaspeed 6 at car show with lowering springs and brake kit
Daniel’s Mazdaspeed 6 at HIN

I got my MS6 back in January of 2018. It was a bone stock 2007 Sport with ~68k miles, but I got a decent deal due to some scratches/dings from the previous owner’s kids. I was familiar with the Speed6 because a high school buddy bought one shortly after we graduated, so I had been looking off and on since I started at CS. Since we didn’t have one in the fleet at CS then, and I wanted the AWD, it was an excellent fit for me. In typical speed fashion, I got a check engine light on the ~2-hour drive home from where I bought it! Clearing the CEL would require an EGR cleaning before I could register it, but I was still in love, despite the stock wheels & monster truck ride height.

Mazdaspeed 6 project build
Daniel’s Mazdaspeed 6 Before Modifications

From humble beginnings, the modifications started slowly. The first six months were the “basics”; HPFP internals, downpipe, exhaust, lowering springs, upgraded TMIC, and plasti-dipped stock wheels. I was still surviving on the stock intake and using the OTS tunes on the Cobb Accessport – standard new Mazdaspeed owner things. I completed a VVT replacement at around 70K miles as the chain started hitting the valve cover, but then things started getting interesting.

Mazdaspeed 6 black in stance
Black Mazdaspeed 6

Just before the 1-year of ownership, my stock K04 turbo began smoking as expected. Being the only Mazdaspeed 6 at CS meant my car was in the shop off and on for R&D, so I took advantage of one of the early exhaust manifold test fits to throw in a CST4 Mazdaspeed Turbo (still known as the “CS 18G turbo” back then), a 3.5” intake (with a custom & very early prototype of the Mazdaspeed 51R battery box), a few other supporting mods, and some special sauce from Erik @ Dramatuned. So just before my car’s birthday, it was FBO minus manifolds. Somewhere in there, I was also the guinea pig for the CorkSport 330mm Big Brake Kit on the MS6 (still one of my favorite mods to date) and some wheel spacers to clear.

Image: CorkSport-MS6-BBK

Mazdaspeed 6 big brake kit

2019 was a bunch more R&D for the Mazdaspeed 6 platform. I spent a few months driving around without a front bumper during the MS6 Front Mount Intercooler development! Then came some even more fun stuff. I was able to snag some early production run intake manifold and exhaust manifold along with an EWG setup (Exhaust Manifold, Tial, and Dumptube). Finally, I was “full bolt-on” and completed tuning. While its v-dyno was a little overestimated, here’s an idea of power to expect for a similar setup on pump gas (red line) and on a couple of E mixes (the blue line was E30, green was E25). Ethanol is worth it!

Dyno data for a Mazdaspeed 6
Black Mazdaspeed 6 with engine bay open

After having gone through most of the CorkSport catalog for power mods, I began to do a few aesthetic mods, which is where the “SPDBOAT” plate came in, a simple play on Mazdaspeed and how heavy and “boaty” the cars can feel at times. It’s dumb, but I love it! Also came some miscellaneous mods. An upgraded rear sway bar, diff mount, as well as the transfer case, and rebuild with billet bearing caps all were added.

Mazadaspeed 6 in black at boat dock
Daniel’s Mazdaspeed 6 SPDBOAT at the Lake

By birthday number two, a long-awaited wheel setup was introduced. Initially, I ordered a set of Gram Lights that would’ve fit without too much effort. However, after many issues and shipping delays, I canceled that order and went something much more aggressive. I settled on 18×9.5 Enkei GTC01RR wheels on a 255/40 tire. I was going for meaty with this setup, and it looks great. After a fender roll all around, camber, and spacers in the front to clear brakes, final offsets are +35 front, +42 rear with ~2.5 degrees of negative camber. There’s only so much wheel and tire you can fit without more intense modifications, but the handling boost was amazing!

Close up of modded Mazdasped 6 with upgraded wheels and CorkSport Big Brake kit
Enkei GTC01RR Rims for the Mazdaspeed 6

I ran the car on this setup for another year. This configuration was a great “all-rounder,” and I loved it. Not perfect at any specific thing, but a great daily that’s fun in the corners, decent enough to go to a show, and with enough power to do well on the occasional trip to “Mexico.” But then, it started consuming oil. Just after my third year with the car (early 2021 for those keeping track), I found cylinder four down about 40psi of compression and cylinder 1 with about 20% leak down. Still working fine, but eating about of quart of oil every ~600 miles meant it was time for a rebuild.

Mazdaspeed 6 Black photo
Mazdaspeed 6 at Mazda Takeover

While I hate to leave on a cliffhanger, that’s the end of part 1. Stay tuned for part 2, where things get spicy, including a built motor, a bigger turbo, and a broken bone…?

I hope you enjoyed my tale, and please let me know if you have any questions. By now, I know more than I need to about the MazdaSpeed 6!

-Daniel

Connect with us

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

Sneak Peek of the Upcoming Rear Hatch Brace for the 2019+ Mazda 3

We are excited to let you in on the Rear Hatch Brace (RHB) development process for the 4th Gen Mazda 3 Hatch!

This project began after slaying the Tail of The Dragon’s 318 curves last October. We determined that the new Mazda 3 would benefit from additional bracing, and we are currently testing the first round of prototypes. In this blog, we will go into the development process of the Rear Hatch Brace and the steps we took to get to our current sample, which will be the design you can purchase for your hatch in the coming months.

This project began by searching for suitable mounting locations to tie the brackets and cross bars into the chassis effectively. After removing a good amount of the hatch trim panels, we found that the existing mounting locations for the seat back latch were a perfect spot to use as the location for the main cross bar brackets since they are tied into a main chassis structure. They also feature two M10 bolt locations perfect for providing a secure bracket mounting point.

After we nailed down the main cross bar’s mounting locations, we looked for another spot to tie in additional bars required to triangulate the brace. The bracket that links the rear seats back together was an obvious choice since it also offered two M10 mounting locations that were easily accessible. The CAD model depicts the brackets below, which are highlighted in blue.

mazda 3 turbo performance parts rear brace

Once we identified all the mounting locations, the next step was to move on to designing the brackets and cross bars. This process was considerably easier since we created the parts using the Mazda 3 hatch chassis in CAD, as seen above. The first components to be designed were the brackets. The brackets needed to match the angle of the rear seats without sticking out too far into the storage space to retain the practicality and usability of the hatch.

Retaining practicality is also the main reason why we wanted the brackets and cross bars to be separate. If you ever need to remove them for additional space, it can be done quickly without removing any trim pieces. We also wanted to provide two configurations or “Stages” of the RHB to give you more options. Once all these constraints were taken into consideration, it resulted in our bracket design, which is currently being tested on one of our shop cars. Below you can also see a comparison between the CAD model’s Stage 1 and 2 configurations.

Stage 1 – Single Bar System

turbo mazda 3 performance part chassis bracing stage 1

Stage 2 – Triple Bar System

turbo mazda 3 performance part chassis bracing stage 2

For the design of the cross bars, we initially started with an alternative design and material. The first iteration of the cross bars featured a round tube that would be welded to bent sheet metal end brackets to provide a mounting surface to interface with the brackets attached to the chassis. While this design would have been functional, it looked less OEM than we wanted. Additionally, it would have added considerable difficulty to the RHB’s manufacturing and overall cost.

We decided to search for a better solution that would function as expected while also improving in the areas the previous design lacked. Over the course of the design process, we moved to a rectangular tube as the stock material. The R&D process resulted in the rectangular cross bars we are testing on the car now. A comparison between the two designs is highlighted in the images below.

Mazda 3 turbo performance bracing for hatchback
 2023 Mazda 3 turbo hatchback rear bracing parts  

The last detail of the Mazda 3 Rear Hatch Brace is all the hardware tying the brackets and cross bars together, along with the coating used on the parts. For the hardware, we wanted to provide bolts that matched the clean look of the brace and complemented the look we were going for. That led to us selecting countersunk bolts and finishing washers which are stainless steel for excellent corrosion resistance and help add the extra flare we were shooting for. The cross bars and brackets are textured black powder coat, further complimenting the factory interior while providing a rugged finish. As you can see below, the results are beefy!

2021 Mazda turbo chassis scanned data

Mazda 3 hatchback rear hatch brace installed

Thank you for reviewing the details of the design process of the CorkSport Rear Hatch Brace. If you are interested in picking one up for your 4th Gen Mazda 3 Hatch, stay on the lookout – it will be hitting the website in the coming months.

Connect with us

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

You may also like:

Everything You Need to Know About Camber Plates 101 – What are Camber Plates & Why do I Need Them

When lowering your car with coilovers or lowering springs, you will need an alignment to reset the suspension geometry for optimal performance and tire wear.  One of the key aspects of this alignment is the camber. 

The suspension alignment of your Mazda can completely change the way the car handles, brakes, and accelerates.  Camber is one of the critical variables in an alignment that needs to be set up for your Mazda and for your driving needs.  Let’s talk about camber and why you might need camber plates.

2020 Mazda 3 stanced

Camber (aka camber angle) is the measured angle of the wheel/tire centerline vs true vertical.  Any measurement in angles is typically expressed in degrees in the automotive world and can be stated as negative, neutral/zero or positive degrees of camber. 

In the image below we have a diagram showing a mock setup with a MacPherson strut suspension style. MacPherson struts setups are common in passenger cars and are used in the Mazda 3, Mazda 6, CX5, CX9, & CX50

Camber Diagram Breakdown:

  • The thin red arching part represents the chassis and fender of the vehicle.
  • The grey color components represent the lower control arm and the strut assembly (MacPherson Strut).
  • The black thing that looks like a tire…is the tire and wheel.
  • The green line represents “True Vertical” so we can see the camber .
  • The blue line represents the “Wheel/Tire Centerline” and will change angles depending on camber.

Let’s assume the vehicle is sitting on the ground and we are facing the front of the vehicle driver’s side.  When the vehicle is sitting on the tires this is considered our “static ride height”.  This is important to note because this is how the vehicle’s static alignment is measured.  Let’s break down the adjustments of camber.

Negative Camber:

Negative camber is when the top of the tire leans inward towards the center of the vehicle. A typical amount of negative camber for a street-use vehicle is negative 0.5 – 1.0 degrees in the front and slightly more negative 0.8 – 1.5 degrees in the rear.  This provides a good balance of performance cornering grip, braking, accelerating and tire wear.  The slightly more negative rear camber aids making the car more oversteer prone which is safer for the average driver. 

The Pros of Negative Camber:

Negative camber is critical to the suspension alignment as it directly affects the total mechanical grip of the tire.  Negative camber helps keep the tire contact patch in full contact with the road surface during corning.  When the vehicle is sitting or driving straight the tire is leaned inwards slightly with negative camber.  When you turn the vehicle typically leans outward slightly (body roll) and thus affects the tire contact patch.  The static negative camber counteracts that body roll, keeping the tire contact patch flat to the ground when you have a body roll from turning. 

The Cons of Negative Camber:

Negative camber reduces the overall tire contact patch size in straight-line driving.  This affects braking and acceleration due to the reduced contact patch size.  Too much negative camber, typically more than negative 3 degrees, will drastically affect this to the point that it may make the vehicle unsafe to drive on public roads.  So, negative camber is a balancing act of too little vs too much and should be professionally adjusted to benefit the overall suspension setup and use of the vehicle. 

Positive Camber:

Positive camber is not typically used on a street and/or road course racing car.  With positive camber, you would have the cons of camber in straight line performance braking and acceleration and even worse performance in turn as the positive camber would exaggerate the body lean.  If you have positive camber, it is highly recommended to inspect your suspension for issues and/or get the vehicle aligned and adjusted. 

However, there are exceptions to this.  In very specific racing environments such as oval circuit races.  Negative camber on the outside tires and positive camber on the inside tires can be beneficial because the vehicle is only ever turning in one direction.  Therefore all four tires (not just the outside tires) are counteracting the body lean of the vehicle while turning.

Static vs Dynamic Camber:

Camber can be defined in two forms; static and dynamic. 

  • Static Camber is when the vehicle is sitting on the tires (aka at rest).  This is how alignment shops measure the vehicle’s alignment including camber.  
  • Dynamic Camber is the resulting camber as the wheel/tire moves up and down in the suspension travel.  

When an individual speaks to their camber setup, they are most likely talking about their static camber.  Dynamic camber is not easy to measure without knowing the geometry of the suspension itself.  Dynamic camber changes as the suspension travels up and down.  Typically as the wheel/tire travels up from ride height (aka bump travel), there is more negative camber called camber gain.  The opposite follows when the wheel/tires travel down from ride height (aka droop travel), there is less negative camber called camber loss, and can even become positive camber with some suspension styles. 

Camber Gain in Bump, Static Ride height, & Droop

 Mazda 3 performance parts camber diagram 2

In a MacPherson Strut-style front suspension (Mazda’s go-to setup), the camber gain is fairly minimal at typically less than 1 degree of negative camber gained in the first bit of suspension travel.  As the suspension excessively compresses in bump, the camber gain is typically reduced or lost.  This is called the camber gain curve and is described as a curve because it is dynamically changing as the suspension travels up and down. 

Reviewing the above diagram there are three images showing the change in camber due to camber gain/loss.  Watching the relation of the blue and green lines, you can see the chamber change depending on wheel/tire travel. 

  • Middle Image: Shows static ride height at neutral/zero camber.  This can be seen with the blue and green lines, they are parallel.  
  • Left Image: Shows bump travel camber gain.  The blue and green lines are intersecting at the top and have a larger gap at the bottom. 
  • Right Image: Shows droop travel camber loss.  The blue and green lines have a gap at the top and are intersecting at the bottom. 

As you can see, camber is a very dynamic aspect of the suspension geometry that affects many aspects of the vehicle.  Cornering, braking and accelerating are all directly affected by dynamic camber, but this all start with your static camber setup. 

Let’s be real, static camber is how you fit those new wheels and tires you are so excited about; so let’s talk more about camber and its effect on fitting those wheels and tires.  Static camber, as discussed above, sets your baseline camber for the dynamic camber to “build off of” through suspension travel. 

Static Camber + Camber Gain = Wheel/Tire Clearance to Fender

Here you can see a diagram of wheel/tire clearance to the front fender when the suspension is in bump travel.

The more negative the static camber is, the more fender-to-tire clearance you have in bump travel. 

Your chosen wheel and tire setup will also have an effect on this clearance due to the many different widths and offsets you can choose. Generally, the smaller the offset, the more the wheel will “poke” outward from the side of the vehicle.  Wheel width and offset are the key aspects to fitting a wheel on a given setup.  Typically your Mazda 3 is going to need a fairly conservative wheel and tire setup to fit without excessive negative camber. 

Instead of trying to explain all the details about wheel and tire fitment setup, I’ll point you to a fantastic website that allows you to input your existing wheel and tire setup and compare to your new setup.  The website outputs a great visual diagram of the current and new setup with measurements you can reference. See: www.willtheyfit.com

Here is an example of our wheel and tire setup vs the OEM wheel and tire setup.  This is currently on our 2021 Mazda 3 Turbo Hatch.  It looks fantastic and performs great with our Turbo Lowering Springs and our Coilovers.

Mazda 3 performance parts wheel fitment guide

Lastly, camber is not the only suspension setting affected by lowering your car on springs or coilovers.  Toe is the next critical suspension setting that needs to be corrected after camber is set in place.  Toe also drastically affects how the vehicle drives and will quickly destroy tires if not setup correctly for the intended driving.

2021 Mazda Turbo Camber Adjustment

Read about The Best Camber Plates for the Mazda 3 & CX-30

How Do You Adjust Camber?

Most MacPherson struts do not have any camber adjustability from the OEM, so what do you do? Depending on the amount of drop from your lowering springs and your driving needs, you may need to purchase aftermarket camber plates to get your suspension dialed in or to prevent your meaty wheel and tire setup from rubbing!

So, the moral of the story. When lowering your car, make sure to get a proper alignment for the betterment of your vehicle’s performance and the longevity of your tires!  Don’t go too crazy with camber; remember it’s a balancing of performance, durability, and fitment. 

2020 Mazda 3 stanced CorkSport

Thanks for tuning in, we hope this was a helpful blog about camber setup for your Mazda!

Barett @ CS

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

Race Better with the Mazda 3 Transmission Gears Upgrade

Racing is brutal! When pushing a vehicle to the razor’s edge, you tend to find the platform’s limitations rather quickly – then set out to overcome them! This is precisely where the CorkSport 3rd & 4th Upgrade Gears come in. 

 Mazda 3 manual transmission gear upgrade

In the years of racing our Touring Car class Mazda 3, we found many pitfalls that have been easy to overcome. However, we found the gears’ limit with the 317whp/355wtq of the CorkSport Turbo Kit pumping through the manual transmission. Pair that with a limited-slip differential and wide sticky racing tires…well, it’s shocking the drivetrain has held up as well as it has.

Mazda 3 TC Racecar performance parts

Destroying a transmission during a race weekend was not a viable path to success, so we developed our own race-quality CorkSport High Strength Gears to solve the problem. As you might imagine, this posed some significant challenges. For example, to retain the 6-speed setup, we had to stick with the same gear widths – which are very narrow.

Mazda 3 performance upgraded gears manual transmission

To gain the strength and durability needed, we opted to use a higher strength material; SAE9310 steel, and to further increase the durability, the surfaces are shot peened. The shot peening process helps durability by reducing the chances for stress cracks to develop, increasing fatigue life and bending strength.

mazda 3 racing full send with gears

Since then, we have been running these gears in our TC Racing Car for a complete season to validate that there are, in fact, better than OEM. Racing is the ultimate test for performance parts, and we are happy to report the transmission has caught every shift!

So why might you need these upgrade gears?  Do you have a turbo or supercharger kit on your manual Mazda 3 or Mazda 6?  Do you like driving your car hard and even doing some structured racing events? If yes, these may be in your future, so you can push your Mazda to the limits without worrying.

Thanks for tuning in!

Barett @ CS

Connect with us

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

You may also like: