CST6 – The CorkSport Stock Flange Record Turbo

A few weeks ago we discussed some of the design intent behind the CST5 turbocharger for the Mazdaspeed platform.  Today, we want to follow up with the CST6. The CST5 and the CST6 both were a result of CorkSport’s desire to develop a new stock flange turbocharger that goes beyond the power limits of our FANTASTIC  CST4 Turbo.  

During development of a higher power stock flange performance turbo we found that we were asking too much of the CST4 Design.  The result of our efforts are the CST5 Turbo which you can see here and the CST6 Turbo which we are about to dig into.  

In this blog we’ll dig into the wheel sizing, the CHRA, and some of the challenges we faced in the development and testing.  

The compressor wheel utilized on the CST6 the well-known and trusted GEN1 GTX76.  The GTX76 compressor is rated for 64 lb/min and is capable of boost pressures that will require a 4bar MAP sensor upgrade.  Like the CST5, the compressor housing is a 4inch inlet with anti-surge porting.

Unlike the CST4 and CST5, the CST6 uses a completely different CHRA and bearing system, and for good reason.  As the turbocharger wheel sizes increase so do the weight and potential boost pressure. This results in higher loads on the wheels, turbine shaft, and bearing system. To increase durability and performance of the CST6, we opted to move from a conventional journal bearing design for a more modern and robust ball bearing design.  

The ball bearing system improves durability and stability for high horsepower/high boost operation along with improved spool and transient response.  Changing the CHRA did pose some new challenges however. Ease of installation has always been a key feature with CorkSport products and that’s not lost with the CST6.  The CHRA has been modified to support use of the OE oil drain line and all necessary oil feed components and coolant components are included for seamless installation.

Like the CST5 Turbo, we’ve put focus on the wheel size ratio and have validated it’s performance. The CST6 Performance Turbo uses the Gen1 GTX76 compressor wheel paired with the Garrett GT35 turbine wheel…aka GTX3576r.  This wheel combination provides us with a ratio of 1.12 which falls well within the rule of thumb discussed the in the past CST5 blog.

In testing, we found that increasing the size of the turbine wheel from a GT30 to a GT35 with the same GTX76 compressor wheel resulted in more top-end power and no penalty in spool time.  This combo also provided a good power delta from the CST5 to better provide an optimal power option for the community. Since then the CST6 has proven power at 600+whp at ~34-35psi and testing will continue past 40psi.  

The initial testing of the CST6 started with an internally wastegated turbine housing as that was the original goal with the CST5 and CST6.  However, it quick became obvious that a turbocharger of this size and power potential could not be safely controlled with an internal wastegate.  The amount the wastegate port and “exhaust” or flow was not nearly adequate for proper boost control.

Boost would creep to nearly 26psi with no signs of tapering off.  Nevertheless we continue testing knowing that auxiliary fueling was necessary.  Once the CST6 power and durability was validated we moved to design a turbine housing that could provide the necessary boost control and power potential.

Above is the removed CST6 internally waste-gated housing.  In our testing we pushed the turbo to nearly 600whp with 40gph of methanol auxiliary fueling.  This amount of heat combined with a turbine housing that was literally being pushed to its limits resulted in a great learning experience.  As you can see, the turbine housing was cracking! The GT35 turbine wheel and power was just too much.

From this discovery and analysis we developed the EWG turbine housing with the CST6 in mind.  The scroll size was increased, wall thickness increased in critical areas and the 44mm EWG port added.  

With the use of the EWG turbine housing, boost control is now spot on and can easily controlled from spring pressure to an excess of 35+psi.  Stick around as we continue to push the limits of the CST6 as we continue testing and validation of the CorkSport V2 Intake Manifold w/Port Injection.  

Thanks for tuning in with CorkSport Mazda Performance.

-Barett @ CS

Mazda 6 2.5T Stock Spring Evaluation

Today we’re taking another dive into OEM Mazda parts to better understand how they function. Specifically, OEM suspension springs, since there are CorkSport Lowering Springs coming soon for the 2018+ Mazda 6 2.5T. While a simple concept, springs are very important to the handling, appearance, and comfort of your vehicle.

The new Mazda6 Turbo uses a lot of the same components as the GEN3 Mazda3 and Mazda6, however the suspension has been optimized for the new “premium” feel and to deal with the extra weight that comes when adding a turbo. The SkyActiv chassis has largely remained the same though, with the same MacPherson strut front suspension and multi-link rear suspension shown below.

Now, onto the springs themselves; both the front and rear suspension of the Mazda 6 use standard compression springs. The springs job is to support the weight of the vehicle when at rest and adsorb impacts when hitting bumps or going quickly around a corner. That’s it. Seems simple enough right? Since the springs are the parts of the suspension that “suspends” the vehicle though, their characteristics and how they interact with the rest of the suspension system are critical.

There are two main characteristics that define a spring: rate and free length. Both are pretty easy to understand. Free length is simply the length of the spring with no weight or force acting on it. So set a spring by itself on a table, measure how tall it is, there’s your free length.

Spring rate is a little more complex, as it is the measure of how much weight it takes to compress a spring a given distance. So, if you have the same weight and put it on two different springs the one with the higher rate will compress less. The rate is usually measured in kg/mm (often shortened to K) or lbs/in.

For example, if you had a 2K spring and a 4K spring and applied 100kg to each, the 2K would compress 50mm and the 4K would only compress 25mm.

What do these measures mean for your car though? If we keep the rate the same but only change free length, the shorter the spring, the lower the car. For a given car, a spring can be too short, causing poor ride (sitting on the bump stops all the time), or the risk of a spring coming out of place, causing noises or at worst, the spring falling out of the vehicle.

If we change the spring rate and leave the free length the same, things are a little more complicated. The higher the rate, the stiffer the ride is, plus your ride height will increase. Since the weight of the car is not changing, the higher rate spring will now compress less when the car sits on it, meaning your car sits higher at rest. Too large of a rate and your OEM shocks cannot keep up causing a bouncy ride, and vice-versa if too soft you are hitting bump stops over the smallest bump. Obviously there is a balancing act to get the spring rate and free length correct for the application for the best in appearance, handling, and comfort.

Now that the basics are covered, let’s look specifically at the Mazda 6 2.5T. The OEM springs give a good ride as to be expected (likely very soft spring rates) as this can be a huge issue for potential customers if the car ride quality is harsh. Handling is decent overall but has a few quirks. When going around a corner quickly, the car rolls over onto the rear springs excessively before settling, and getting through the corner. When at the limit of traction, the car understeers severely, like most cars sold today.

Finally the ride height is pretty high, likely to prevent any issue with driveways saying hello to the new front fascia. Interestingly, the MZ6T sits a little higher in the rear; we think to ensure enough suspension travel in case there’s a full load of passengers and a full trunk.

For further analysis we also had the OEM springs tested for rate and ended up with the following: 3.05K front, 5.05K rear. While these numbers are fairly arbitrary right now, they are a necessary data point to have when designing lowering springs. These rates also contradict a very common misconception. Many people think that because there is less weight in the rear of a front wheel drive car, the spring rates must be softer in the rear for a good ride & handling. This is simply not true in most cases, after all why would Mazda do the opposite? Due to the design of the rear suspension, the spring is basically being pushed on by a lever. This means the spring needs to be stiffer in order to support the same amount of weight as if the lever wasn’t there.

So overall, the OEM springs are good, but have plenty of room for improvement. I just touched the surface of suspension design and as we go through more of this project we’ll get into dampers, natural frequency, and much more. Stay tuned for more info and if you have any questions, don’t be afraid to ask!

-Daniel @ CorkSport

Inside look: CorkSport Turbo Design

The development and evolution of the CorkSport Performance CST5 and CST6 turbochargers are uniquely intertwined.   We’ll be honest, we started with the goal of a single larger turbo than the CST4 in mind, but as development progressed we were not getting the exact results we wanted. We wanted fast spool & transient response, huge power, and to retain the internally wastegated system.  Something had to give…we realized that we were asking too much from a single turbocharger, thus we redefined what we wanted and realized that two separate and focused turbochargers for the Mazdaspeed platform was the ideal choice.

Today we will focus on the design around the glorious CST5, specifically the theory and design around the wheel selection for the CST5 and why it works.  

The compressor wheel utilized on the CST5 is the well-known and trusted GEN1 GTX71.  Compact and efficient, this compressor is rated for 56 lbs/min flow rate with a relatively high-pressure ratio threshold.  Paired with a 4-inch anti-surge compressor housing and we have a very versatile and responsive compressor setup.

Now here is where the design begins to deviate from the standard path.  The turbine wheel is a MHI TF06 design that is designed for high performance applications.  The TF06 turbine wheel is the key to the performance of the CST5. Let’s see how and why below.

If you are unsure of the turbine wheel size don’t worry, that will get covered shortly.  For comparison, the MHI TF06 is very similar in size to the well-known GT30, but there are a few very specific differences that affect performance.  

The first and most obvious difference is the number of turbine blades; this difference has a couple benefits. First, less weight; even a small difference is weight can make a significant difference in the spool and transient response characteristics of the turbocharger.  Second, reduce flow restriction; with one less blade the “open” area through the turbine wheel exducer is increased which increases the peak flow potential for top-end power.

Next are the less obvious differences.  The GT30 has a 60mm inducer and 55mm exducer which equates to a 84trim turbine wheel vs the TF06 with a 61.5mm inducer and 54mm exducer which equates to a 77trim turbine wheel.   

There are two key values to pull from this:  First, the turbine wheel inducer directly relates to the peak flow of the wheel and the overall wheel size balance which we will cover next.  Second, the turbine wheel trim affects the spool and response characteristics of the turbocharger. The smaller the wheels trim the faster the spool and response.  

Alright here is the most important and commonly overlooked aspect of a turbocharger.  There is a rule of thumb when sizing the compressor and turbine wheels for a turbocharger.  

If the turbine is too large then the turbocharger will be very “lazy” and have trouble building boost.  

If the turbine is too small then the compressor may be overpowering the turbine wheel causing excessive exhaust gas buildup that can rob power even though you may be running a very high boost pressure.  

So what is the right balance?  From our experience in turbocharger design, development and validation along with industry professionals we have consulted there is a rule of thumb we have found when sizing the compressor and turbine wheels.  The exducer of the compressor wheel should be 10-15% larger than the inducer of the turbine wheel as shown in the image above.

So why does this work?  Well let’s look back a bit first.  Many think you can just install a larger and/or higher flowing compressor wheel onto the turbocharger to make more power.  Now that is true to a point, but quickly the approach becomes very inefficient for the engine. Forcing more air into the engine without improving the flow out of the engine can only go so far.  

Everything that goes into the engine must come out right?  Increased A/R sizing and turbine wheel sizing is the key to exhausting all the gases from the engine efficiently, and efficiency is key to making power.

With both the CST5 and CST6 development we focused on the overall performance of the engine, not just the development of a high performance turbocharger.  

Thanks for tuning in with CorkSport Mazda Performance, more to come…

-Barett @ CS

CorkSport Mazda6 2.5T Boost Tube

We are proud to release the https://corksport.com/2018-mazda-6-2.5l-turbo-boost-tubes.htmlCorkSport Upgraded Boost Tube for 2018+ Mazda 6 2.5T and 2016+ CX-9 2.5T. The CorkSport boost tube is larger, stronger, more reliable, and of course better looking than the OEM rubber tube. Increase throttle response down low, hit boost targets easier and future proof your ride for mods down the road with a simple 1-hour install. Read on for full details and be sure to check out the R&D blogs here and here for the backstory.

In case you haven’t read the previous blog installments, the CorkSport Boost Tube improves on the OEM boost tube by first strengthening the tube. Instead of using rubber with one reinforcement layer, the CS boost tube use silicone with 5 layers of reinforcement. Aside from the extra layers of reinforcement, silicone stays strong at high engine bay temperatures that may cause rubber to flex excessively. In addition, silicone lasts longer and will better resist cracking as your Mazda 6 Turbo ages. The OEM boost tube is made from materials very similar to the OEM Mazdaspeed 3 boost tubes that showed signs from aging extremely quickly, especially when subjected to higher than OEM boost levels. Cracking or splitting of the OEM tubes results in boost leaks and a poorly running car, definitely not what you want from your brand new SkyActiv 2.5T.

The added strength prevents the CorkSport Upgraded Boost Tube from expanding excessively when subjected to pressure. When pressure tested at 20psi (the largest pressure we have seen at the intercooler outlet), the OEM tube was shown to expand 12% at the internal cross-sectional area. The CS tube tested under the same conditions expanded 3x LESS. This difference would get even larger when subjected to the same pressure at a higher temperature. What does this mean for performance though? When you get on the gas, the boosted air will have to expand the tube before it can enter your engine. The less the tube expands, the easier it is to hit boost targets, and the better throttle response you have, especially down low in the RPM range.

The CS Boost Tube also is a larger inside diameter than your OEM tube. It is 3” through the middle vs. the OEM ~2.44”. Since this area of the charge piping system is directly ahead of the throttle body, this large volume of air has the same effect as it does with our GEN2 Mazdaspeed3 FMIC kit, reducing boost lag and increasing throttle response. For full info on why this happens, check out the release blog for that kit here. As a basic overview, the large volume of air right before the throttle body fools the engine into thinking it has a larger intake manifold plenum than it really does. While not as severe of an effect with just changing this boost tube, try it for yourself and see what you think!

Installing the boost tube is a little tricky due to where it is located, but we include high quality installation instructions to make it easier. Even so, it can be installed in an hour or less in most cases. We also include polished stainless steel T-bolt clamps to ensure a complete seal and add a subtle visual boost.

Be sure to check out the product listing for more pictures, the install instructions, and a detailed product video. Let us know if you have any questions, we’ll be sure to help you any way we can!
Lastly, if any of you are looking for a more serious upgrade, stay patient, our FMIC upgrade & full piping upgrade kit are coming soon!

Mazdaspeed Turbo – Choose Your Boost

May of 2015, CorkSport launched its first high performance drop-in turbocharger for the Mazdaspeed platform.  Fast-forward almost 4 years and CorkSport again is about to redefine what a stock flange turbocharger for the Mazdaspeed platform can truly be.  

The original “CS Turbo” is now the CST4 to follow the turbo line-up that is soon to launch.  The CST4 took a fresh approach to “big turbo” with all the included hardware, gaskets, and of course direct drop-in fitment.  It removed the guess work for a quick and easy installation, but the benefits didn’t stop there. This “little big turbo” packs a punch for its compact TD05H-18G wheels.  

With the CST5 and CST6 just around the horizon it would be easy to forget about the tried and true CST4, but don’t worry this Mazdaspeed Drop-In Turbo got some new love also.  You will now have a EWG housing option for the CST4. You can pick it up in EWG setup from the start or if you already have a CST4 that you love, you can get the EWG housing kit to do the upgrade yourself.

Moving onto the CST5 & CST6 the possibilities for the MZR DISI have moved up significantly.  What started as a single “bigger big turbo” has morphed into two “bigger big turbos” that, we feel, better provide for the various power goals of the community.  

We present to you the CST5

The CST5 bridges the gap between drop-in performance and big turbo power.  The journal bearing CHRA uses a hybrid TF06-GTX71 wheel setup that provides more top-end than the CST4 with minimal spool and response penalty.  Upping the big turbo feel is a 4in anti-surge compressor inlet which will require an up-sized intake system.

Unlike the CST6, the CST5 will be offered in both internally waste-gated and externally waste-gated setups.  This provides you with the flexibility to setup your Mazdaspeed just how you see fit and both have been proven 520+whp on our in-house dyno and tuning courtesy of Will Dawson @ Purple Drank Tuning.

Now… We present to you the Stock Flange Record holder…the CST6

Image: Mazdaspeed-6-big-turbo

The CST6 redefines what the community thought was possible from the stock turbine housing flange, but first some details.  The ceramic ball bearing CHRA uses a GTX3576r wheel setup that clearly out powers the CST4 & CST5, but that’s point remember?  

The CST6 is a legit big turbo, spool will be later, but still sub 3900rpm for full boost, however a turbo setup like the CST6 is not intended for low-end response.  If top-end power is your goal, the CST6 will deliver. In-house testing has pushed the CST6 to 633whp at a fuel limited ~33psi and 7900rpm redline.

Unlike the CST4 & CST5, the CST6 will only be offered in EWG setup.

In the coming months, we will be sharing more information about the CorkSport Turbo Line-Up; the design, the testing, and validation of each.  For more information about the CST5 & CST6 along with the new EWG turbine housing option, check out these sneak peek pages.  

Thanks for tuning in with CorkSport Mazda Performance.

-Barett @ CS