Testing – CorkSport External Wastegate Housing for Mazdaspeed

Turbo EWG

Why EWG?  (it’s just about awesome turbo noises)

We hear this alot as the Mazdaspeed platform continues to grow and the 450-500whp build becomes the status quo. Following up the EWG Housing Design & Details Blog about the new CorkSport EWG Housing, we want to share some testing data and differences we saw between an IWG (internal wastegate) and EWG (external wastegate) setups.  

Details about design, flow, placement, data, and feedback from our CST4 EWG Beta Tester.  

IWG vs EWG comparison on the CST4
IWG vs. EWG on the CST4

Let’s jump right in!  First up is a spring pressure comparison between the IWG and EWG housing on a CST4 turbocharger.  Let’s first define what “spring” pressure is: this is the resulting boost pressure with 0 added wastegate duty cycle.  AKA we are not trying to add boost pressure.

Immediately you can see some very obvious differences.   The IWG setup has a taper up boost curve that could be considered boost creep.  Some boost creep is ok, but an excessive amount may reach the capacity of the fuel system or other systems in the vehicle.  In this setup that is not the case, but it does show that the IWG is at its limits for boost control.

With the EWG setup you see a much different curve.  The boost builds a few hundred RPM later (due to the larger 0.82 A/R) then climbs right to the spring pressure and then settles to a consistent plateau; very predictable and controllable.  

CAD EWG and IWG Designs
CorkSport EWG and IWG Designs

Now let’s look at the design to better understand why.  On the left is the EWG turbine housing with a 0.82 A/R and on the right is the IWG turbine housing also with a 0.82 A/R (we don’t want the A/R to be a factor in this review).   

The EWG housing has a very efficient flow path for the exhaust gas to reach the EWG control valve along with a much larger path to flow.  Both of these features provide excellent flow and thus control of boost pressure.

The IWG housing uses a side port in the turbine scroll to exhaust gas.  In this setup, the exhaust gas must make an abrupt turn and pass through a much smaller port.  Both of these issues reduce boost control.

EWG and IWG Explained

Here is a diagram showing placement of an EWG in the exhaust pre-turbine.  Granted we are comparing a EWG and IWG, but the concept of flow is the same.  

Exhaust gases will always take the path of least resistance and if the turbine wheel is the easier path than the wastegate then boost control will be more difficult.  

Internal and External Wastegate performance chart
(Left) Internal Wastegate Setup | Common Issues
(Right) External Wastegate Setup | Optimized Setup
Click to Expand

This graph was shown in the last blog, but we want to show it again so you can directly compare it to the data graph below.  

Below is the boost curves for the CST5 in both IWG and EWG setup.  Alone each graph actually looks really good, but when overlaid you can see some interesting differences.  

CST5 Dyno testing with IWG and EQG setup

IWG vs. EWG on the CST5

The purple IWG graph has a crisp spool and then flat-lines at approximately 30psi with a slight fall off at 6500rpm.  The CST5 IWG setup does control boost really well, but holding the turbo back at spool up and not over-boosting or spiking was a small challenge.  An abrupt boost curve like this can make the car somewhat difficult to drive because the torque “hits” very hard and you lose traction.

The EWG setup was a bit more controllable.  Not only did the CST5 turbo spool a bit sooner, but we were able to better control the spool up boost curve so we could create a torque curve that was more friendly to the FWD traction.  This makes the car more fun to drive. Looking at the higher RPM range we were also able to hold boost more consistently to 7500rpm.

CorkSport External Wastegate

We hope you guys and gals are as excited for the EWG options for the CST4, CST5 and CST6.  They really are an awesome setup for any driving style and power goal.  

Thanks for tuning in with CorkSport Performance.

-Barett @ CorkSport

The CorkSport CST5 is HERE!

We are happy to release the new “medium big” brother to the tried and true CST4, the new CorkSport CST5 Turbocharger for the DISI MZR engine found in the Mazdaspeed 3, Mazdaspeed 6, and Mazda CX-7 Turbo. Finding a middle ground between response and top end power is always difficult when selecting a turbo, yet we believe we have nailed it with the CST5. You get the response of a smaller turbocharger yet retain high horsepower capabilities of a big turbo.

CorkSport CST5 Turbo Front
CST5

Before we get into power, let’s first discuss what makes the CST5 tick. It’s all started with a proven MHI journal bearing center section. These offer great cooling capabilities and fantastic reliability, especially when combined with our high performance journal bearings and 360° high performance thrust bearing. The CST5 can seriously take a beating, and does it in a package that fits perfect in the OEM location.

CST5 Billet Compressor
CST5 Billet Compressor

Attached to this center section is a compressor and turbine wheel combo that is a little unconventional. Creating boost is a tried and true GTX71 billet compressor wheel that is rated at 56lb/min. The turbine that drives the CST5 is where things get a little interesting. Instead of a standard GT30 10 blade wheel, we chose a MHI TF06 9 blade design. This offers a number of benefits that make the CST5 outshine a comparable 3071 setup. One less blade means lighter weight for faster spool times and higher maximum flow capacity. The TF06 design is also slightly larger than a GT30, yielding a better wheel size ratio for more efficient turbocharger and engine function. For full info on the wheels and what they mean for your Mazdaspeed, check out our design blog HERE.

CST5 Turbine
CST5 Turbine

The new wheels are wrapped in new housings. On the compressor side, there is a 4” inlet that includes anti-surge ports for optimum compressor operation and longevity. This large size also maximizes efficiency for 3.5” and 4” intakes. The turbine side is where there are the most differences from the CST4. The A/R has been increased from 0.66 to 0.82 which provides more top end power to match the rest of its big turbo characteristics.

CST5 Internal Wastgate
CST5 Internal Wastegate

Now, what does all of this tech mean for you and your car? If you have a stock block you can easily max out power (~400WHP) and stay safe on your rods. Due to the bigger size, the CST5 peak torque is slightly later than the CST4, keeping you safer even before tuning is considered. Having a built block is where things really get interesting. The CST5 will make~450WHP all day on a “calm” boost level of 25-26psi. If you really want to push it though, the CST5 has made ~520WHP on ~30-31psi. This versatility allows the turbo to grow with your build. So even if you are stock block now, the CST5 can carry you even after you build your block.

The wheel and housing options delivers great response as well as great power. When pushed to its limits on a built block, 20psi was hit at 3400-3500RPM with 30psi hitting by a surprising 3700-3800RPM. Obviously this isn’t stable for a stock block but is possible on fully built cars with full bolt-ons and a high flowing head.

CST5 Dynograph Comparison
CST5 Internal Wastegate vs. External Wastegate

The versatility continues as the CST5 is offered with internal wastegate or external wastegate turbine housing options. The internal wastegate setup is the best if you want an easy drop-in fitment with great boost control. The external wastegate setup if you’re willing to take a little bit more time for fitment and spend a little bit more money on the external wastegate itself for the best in boost control. The EWG setup offers some great new sounds from a screamer pipe as well. As for power, they are very comparable, as shown in the graph above. The EWG setup makes just a tiny bit more up at the peak, but that is likely due to small variances in tuning. While only the IWG setup is offered at the time of writing, the EWG is coming very soon! Lastly, if you must have a CST5 now, don’t worry, the EWG housing will be sold separately if you want to upgrade down the road.

Both the IWG and EWG options come with a full hardware kit that includes everything you need for install. This means all coolant/oil lines, new gaskets, new crush washers, and even new studs and crimp nuts for both the turbine and downpipe flanges. The EWG setup includes a custom designed elbow for great EWG actuator fitment on MS3 and MS6, and the correct clamp to attach it to the housing. More info to come later on an add-on screamer pipe option.

CST5 Included Hardware Kit

CST5 Hardware Kit – Included!

Each CST5 also comes with full CorkSport support, including full-color install instructions, a 1-year warranty, and assistance with any questions you may have. We are extremely excited for you all to get your hands on the CST5 and start making even more power so please check out the product listing for full details and to place to order.

Shop Now

Mazda 6 Turbo Lowering Springs Release!

2018+ Mazda 6 Lowering Springs

We at CorkSport are happy to introduce the Sport Lowering Springs for 2018+ Mazda 6 equipped with the 2.5L turbocharged engine. In our last post, we talked about the height, handling, and quality of our new springs. If you haven’t seen it, check it out HERE. Today we’ll cover how we tested the ride quality and go a step further to talk about damping and natural frequency. I’m going to warn you now; this gets a little bit complicated, but we’re happy to answer any questions you may have.

Spring Damping

Let’s start with a basic example–your car hits a bump which compresses the spring. It “springs” back to its normal length. In a perfect world with no friction or damping, the springs in your suspension would keep bouncing up and down forever, this is called oscillation. Add back in dampening and friction, and the spring will settle out to its normal length pretty quickly. How different strengths of damping affect the “oscillation” can be seen in the graph below.

Spring damping graph
Spring damping example.

The car has hit the bump at the bottom left of the graph. As time goes by, you can see the spring expand and compress and so on. The Greek letter is not important but what is important is the numbers. When it is 0 (black line) the spring compresses and expands over and over to the same height. As the number increases, you can see that the spring returns to its normal length faster until it gets too large and overpowers the spring (dark blue line). For a car, the 0.4 to 1 range is ideal as there is minimal “bouncing” without having too high of damping.

What does all this mean though? Let’s say from the factory the car is in the 0.7 range (orange line). If we went to a drastically stiffer spring, but kept the OEM dampers, we may end up in the 0.2 range (light blue line), which would be uncomfortable due to all the bouncing every time you hit a bump. The CorkSport front and rear spring rates chosen are small enough of a change to fit well with the OEM damping, ensuring no bouncing.

Stock 2018 Mazda 6 and CorkSport Modified Mazda 6
Stock height vs. CorkSport Springs

Natural Frequency Analysis

To go along with this, we did some natural frequency analysis. Natural frequency simplified is how quickly the suspension responds to a bump. Higher the natural frequency, the harsher the ride in a car is. Most “regular” production cars sit in a 1.0-1.6 Hertz (Hz) range for a comfortable ride. Sports cars are usually in the 1.6-2.3Hz range. Full race cars are usually 2.3-3.0 or even higher. An average person will start thinking a ride is stiff/harsh at around 2.0-2.2Hz. Using a special app that ties into the accelerometers of a cell phone we can approximately measure the frequency of a specific suspension setup. With stock suspension on the Mazda 6 2.5T, this yielded ~1.4Hz front and ~1.7Hz rear.

With a stiffer spring, these frequencies will increase, but we wanted to be sure to only increase them slightly, to not severely affect comfort. We went through a few different combinations to get our ideal result. Our final setup ended up at ~1.5Hz front and ~1.85Hz rear. This is enough to notice the suspension feels “sportier” without riding harsh.

2018+ Mazda 6 Roller Shot

There is one other big thing to highlight with frequency. Notice that both the OEM and CorkSport springs have a higher rear natural frequency than front. If your natural frequency front to back is close to equal, the car has a tendency to “pitch” front to back over bumps. Since your rear tires hit the bump slightly later than the fronts, to have a comfortable ride the rear suspension has to “catch up” to the fronts to prevent this pitching back and forth. If a frequency is too much higher in the rear, it can be too fast for the fronts and cause the same pitching issue.

Natural frequency was always on our minds when designing the CS springs and we tested a bunch of different combinations to determine the optimum balance of ride and handling.


That about does it for the Mazda 6 2.5T Sport Lowering Springs. Be sure to let us know if you have any questions-suspension is hard, even for us! Lastly, be sure to share your MZ6T with us by using #CorkSport.

-Daniel @ CorkSport

Shop Now

The Design – 2.5L SkyActiv-G Exhaust Header

CorkSport 2.5L SkyActiv Header

A few months ago we broke down the complicated design of the exhaust manifold found on the 2014-2018 Mazda 3 & 6 2.5L SkyActiv.  Mazda put extensive R&D into the design and packaging of the OEM header to optimize the exhaust gas pulses and overlap.  

In this blog we are going to explain some of the design features in the CorkSport 4-2-1 header and why those features are important.  

Below is a diagram showing the primary, secondary and collector routing of the OE header.  

Mazda 2.5L SkyActive Header
The OEM header for the 2.5L SkyActiv engine has a 4-2-1 design.

When designing a performance header we have to ask ourselves, “what is the goal with this performance part?” and then fulfill that goal.  With the performance header for the 2.5L SkyActiv our goal was to increase mid-range torque, retain good fitment and user installation, and improve the sound output of the exhaust system.  

CorkSport Aftermarket Exhaust Header
CorkSport 2.5L SkyActiv header design.

Immediately you’ll notice a significant difference in the design of the OEM header and the CorkSport Header.  There are three major differences:

  1. Primary, secondary, and collector diameters have been increased to promote better exhaust gas flow.
  2. Primary and secondary runner lengths have been increased to optimize power/torque lower in the RPM range.
  3. The design is two-piece to drastically improve the installation process.  

The primary runners (these are the runners that mate directly to the engine) have been increased in diameter from 1.55” to 1.75” and the secondary runners (these are the runners that combine only two cylinders before the collector) have been increased in diameter from 1.87” to 2.00”.  Both of these changes improve peak flow per cylinder throughout the RPM range. Lastly, the collector has been increased from 2.00” to 3.00” to be paired with the CorkSport 60.5mm or 80mm Cat-Back Exhaust Systems.

CorkSport Exhaust Header Installed
CorkSport Header Installed.

Here’s where things got a bit tricky.  Increasing the length of the primary and secondary runners forced us to be a bit creative in routing all the piping.  In order to achieve the primary runner length we wanted, we had to route the piping upward first (as you can see below) then back down between the engine and firewall.  The results were better than we expected with a “Medusa” style header peeking out of the engine bay and the lengths we wanted.

It makes us grin every time we pop the hood open, we hope you love it as much as we do.  

CorkSport 2.5L Exhaust Header broken down for install.
The final design of the CorkSport 2.5L header is installed in two pieces.

However, the complicated CorkSport design did create a new problem.  Installation! We always try to create a performance part that can be installed by the average enthusiast in their garage and this was no exception.  In a one-piece design, the header was nearly impossible to install. We went to the drawing board and realized that separating the upper and lower halves of the header was the best option.

We considered a conventional flange, gasket and hardware setup, but realized it to was far too complex in the close quarters behind the engine.  We then moved to a v-band connection that proved to be the best setup for installation, weight, and sealing ability.

That wraps up the design, next we’ll breakdown the testing and results! Let us know if you have any questions or thoughts down below.

-Barett @ CorkSport

2018+ Mazda 6 Turbo Lowering Springs

2018 Mazda 6 on CorkSport Lowering Springs

We at CorkSport are happy to introduce the Sport Lowering Springs for 2018+ Mazda 6 equipped with the 2.5L turbocharged engine. We took a fresh approach to spring design to offer you the best combination of style, ride quality, and handling in a package that fits just like OEM. The new Mazda 6 looks great, but a functional drop gives it just what it needs to look even better. Combine this with the new handling characteristics and your MZ6 2.5T transforms from a fun grocery getter to something you can actually enjoy on backroads.

Mazda 6 2.5T CorkSport Lowering Springs
2018+ Mazda 6 2.5T CorkSport Lowering Springs

Ride Height

Let’s start off with the big one: ride height changes. These springs offer a conservative drop from the stock springs with about 1 inch lower in the front and about 0.75 inches lower in the rear. We chose this height as it offers a great new look without sacrificing any of the daily drivability of the Mazda6. This height clears the typical driveway with no issues, and retains plenty of suspension travel, even when fully loaded with 5 adults and weight in the trunk. Check out the image below for a direct comparison to a fully stock MZ6.

Lowered 2018 Mazda 6 vs. Stock Mazda 6
Black: Stock Springs Red: CorkSport Lowering Springs

Handling

The height drop will be noticed when you’re outside the car, but the handling improvements will be apparent when driving. By lowering the center of gravity and stiffening the springs, body roll is reduced in corners, giving you extra confidence when attacking that backroad. In addition, we stiffened the rear springs more than the fronts, reducing understeer. By number, this meant 3.8K front springs (25% stiffer than OEM) and 7.3K rear springs (45% stiffer than OEM). Derrick, our resident racecar driver and MZ6T owner, loves the new setup.

2018 Mazda 6 on CorkSport Springs

While this may sound like a big jump, they ride similarly to the OEM springs. We used a natural frequency analysis to ensure we achieved comfortable characteristics over bumps. Read the last half of this blog for more info on what that means (it’s complicated but awesome). Part of the great ride is the OEM dampers (shocks and struts). The spring rates we chose fit well with the stock shocks and struts to prevent any bounciness, plus, the conservative drop ensures you are in the normal operating range of the dampers. This means no prematurely worn shocks/struts due to springs that are too low.

Lowered MZ6T

Material Quality

Last but not least, the CS Sport Lowering Springs are made from high tensile strength spring steel and come powder coated in an OEM style black for long-lasting quality and corrosion resistance. They install just like stock, reusing all your OEM components. The only permanent modification is trimming the bump stops to match OEM suspension travel.

Be sure to check out the product listing for more images, a product video with more comparisons to OEM, and pricing. Make your new Mazda 6 yours with just the right styling and handling boost from CorkSport.


That about does it for the Mazda 6 2.5T Sport Lowering Springs. Be sure to let us know if you have any questions-suspension is hard, even for us! Lastly, be sure to share your MZ6T with us by using #CorkSport.

-Daniel @ CorkSport

Shop Now