Let’s Get Chilly: CorkSport Intercooler for SkyActiv 2.5T

It’s time to break down our design for the CorkSport Performance Intercooler Upgrade for the Mazda 6 2.5T. We have covered both the OEM intercooler and piping, and our design plan for the upcoming Sky-T intercooler piping upgrade in previous blogs, but today’s focus is the intercooler itself. Intercoolers are a delicate balancing act between size, cooling efficiency, and pressure drop so naturally things can get a little complicated. Buckle up and stay with us, and be sure to drop any questions you may have down below.

Taking a look at the stock intercooler mounted on the Mazda 6 (shown above) shows us quickly where our size constraints lie. With the large crash bar, we cannot go too much larger in height without trimming the crash bar, bumper, or both. However, there is a ton of room for added thickness and better end-tank design that can really help increase the width of the intercooler. The stock intercooler core is 24.5” wide, 5.5” tall, and 2.625” thick. Our plan is to fit a 27” wide, 6” tall, and 3.5” core without any trimming. This sizing combined with a low-pressure drop will be good for 400WHP with no issues! Because the Mazda 6 comes with just around 200WHP from the factory, this sized core provides plenty of room for upgrading down the road without causing excessive boost lag that can occur if an intercooler is simply too big. Check out a prototype CorkSport intercooler mounted on the car below.

Mazda 6 Front Mount Intercooler Installed

Now that size is taken care of, let’s move on to cooling efficiency and pressure drop of the CorkSport intercooler for the SkyActiv 2.5T. These are tied closely together as getting extremely high cooling efficiency usually means high-pressure drop and vice versa. Just so we’re on the same page, cooling efficiency is how well the intercooler cools off the pressurized air that passes through it. So a highly efficient intercooler will be able to bring the boost temperatures down similar to the ambient air temperature. Pressure drop is exactly what it sounds like, a loss in pressure from the inlet to the outlet of the intercooler which can be caused by a number of things: poor end-tank design, too many intercooler fins, or simply poor flow distribution in the intercooler. Too large of a pressure drop means lower boost pressures reaching your engine and/or your turbocharger working harder to achieve the same boost levels.

Mazda 6 Front Mount Intercooler product photo by CorkSport

Pressure drop and cooling efficiency are influenced primarily by two things: fin density and end-tank design. Fin density is basically how many fins the boosted air must pass over when traversing the intercooler. More fins = better cooling efficiency, but also more pressure drop. To choose the best core for the SkyActiv 2.5T we plan to use multiple different fin densities and test each for power, cooling efficiency, and pressure drop. While we can get pretty close based on our work from the CS Mazdaspeed Intercoolers, it’s always best to test and identify the best one for each platform. With this extensive testing, we can reach our goal of improved cooling efficiency, lower pressure drop, more power, and no CELs.

Mazda 6 front mount intercooler back

End-tank design is critical as it determines how the air reaches the core of the intercooler. Sharp bends, poor air distribution, and small inlet/outlet size all adversely affect the performance of the intercooler. To fit the core size we want, we had to do away with the plastic inlet and outlet pipes of the stock intercooler. This was advantageous as it gave us more room to have a smooth-flowing end-tank that distributes air well to all the runners and does away with the sharp corners present in the OEM end-tanks. In addition, we were able to increase the inlet and outlet size of the intercooler to 2.5”. This is a fairly standard size that has shown to work well for the Mazdaspeeds with stock power and without choking flow way up to Barett’s 600+ WHP.

CAD design of the 2.5T SkyActiv Intecooler

Those of you with a keen eye have realized that the connection between the CorkSport front mount intercooler (FMIC) and the OEM Intercooler is not the same. As shown in the CAD rendering above, each intercooler kit will come with the silicone and custom adapters that are needed to work with the OEM piping. If you decide to upgrade to the CS intercooler piping kit, later on, the CorkSport Intercooler for SkyActiv 2.5T will not need to be removed, and you will only need to change some silicone parts.

We will have more info on this kit coming soon, with the next blog covering our testing of the different core designs using a few new toys from AEM Electronics. Be sure to check out the product listing for more info, and to be notified when the intercooler is available. Last but not least, CX-9 Turbo and CX-5 Turbo owners, we are 99% sure this kit will also work on your rides but we plan on validating fitment before release!

-Daniel @ CorkSport

Connect with us

You may also like

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

CST5 Mazdaspeed Turbo Spools!! Testing and Validation

We’re back on the new CorkSport turbocharger lineup again with today’s blog, this time focusing on the testing & validation of the “medium big” turbo, the CST5. Just in case you missed it, the CST4 (formerly known as the CorkSport 18G) is getting some company to go along with its new swanky name. Check out the full lineup here and the design behind the CST5 here. Now that you’ve read all that, let’s get into what you’re really here for, testing & dyno numbers.

Mazdaspeed turbo CST5 Replacement for K04 Turbo

Stay Up-to-date with CorkSport   

We started with the internal wastegate option, to validate the CST5 for drop-in fitment. Since we’ve had a great experience with the drop-in CST4, we knew how to design a turbo around the tight confines of the Mazdaspeed engine bay. The CST5 Mazdaspeed Turbo fits great in the OEM location with just a few minor revisions for proper fitment. It looks pretty good in there too if we do say so ourselves!

Mazdaspeed turbo installed with the CST5

Next the car got put on the dyno for tuning and to push the new CST5 to its limits. With a little help from our friend Will at PD Tuning, the CST5 was soon putting down some impressive numbers. We started off with a “calm” boost level of ~25psi. This netted us 450WHP and spool time which surprised us, achieving 20psi by 3500-3600RPM. Turning up the boost and pushing the turbo to its limits, we achieved 519WHP at ~30-31psi on Barett’s built GEN1 MS3. Check out the dyno graph below.

Dynograph of CST5

Taking the car out on the street surprised us further at just how early the car was building boost for this size of turbo. Road logs showed that we were making 20psi slightly sooner than on the dyno (3400-3500RPM) but even more surprisingly the CST5 was making 30psi by 3700-3800RPM! Obviously, this is an aggressive tune that would most likely kill a stock block, but, the CST5 Turbo can be tuned to be stock block friendly and still make good power.

Best Mazdaspeed turbo for K04 Replacement

Then came the testing on the EWG variant of the CST5. We had developed a fitment for the CST6 which meant the CST5 had no issues upon install on both Mazdaspeed 3 and Mazdaspeed 6. Next was a quick retune and some power runs. The larger swallowing capacity of the EWG housing meant some extra power at peak, yet spool was nearly unchanged. We made 525WHP at the same ~30-31psi.

Mazdaspeed turbo 500+ whp dynograph

Comparing the IWG and EWG turbine housings you can see a small variation in the graphs.  This variation is mainly due to the change from internally waste-gated and externally waste-gated.  The EWG setup provides more precise boost control through the RPM range. The EWG setup allows us to better tune the “torque spike” around 4200rpm vs the IWG setup.  For peak power the IWG and EWG housings are within the margin of error which makes since because they are both 0.82 A/R housings.

Further supporting the IWG and EWG setups, both options allow you to tune the spring pressure so you can better setup your CST5 Turbo and Speed for the fuel and boost levels you want and of course the most noticeable difference is what you hear. What’s an EWG without a screamer pipe!  

500+ WHP Madaspeed Turbo Dynograph

Wrapping up testing showed exactly what we were hoping for with the CST5: a great middle ground between the existing CST4 Turbo and the upcoming CST6 Turbo that can be used on both high-powered stock block and fully built cars. Our testing continues as this blog is written as the CST5 is being beta tested by a close friend of CS with a freshly built Dankai 2.

There’s more to come from the new CorkSport turbo lineup so stay tuned for more info on the CST5, CST6, and EWG housings.

-Daniel @ CorkSport

Connect with us

You may also like:

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

CST6 | Behind The CorkSport Turbo Design

A few weeks ago we discussed some of the design intent behind the CST5 turbocharger for the Mazdaspeed platform.  Today, we want to follow up with the CST6. The CST5 and the CST6 both were a result of CorkSport’s desire to develop a new stock flange turbocharger that goes beyond the power limits of our FANTASTIC  CST4 Turbo.  

During the development of a higher power stock flange performance turbo, we found that we were asking too much of the CST4 Design.  The result of our efforts is the CST5 Turbo which you can see here and the CST6 Turbo which we are about to dig into.  

In this blog, we’ll dig into the wheel sizing, the CHRA, and some of the challenges we faced in the development and testing stages for the CST6.  

Stay Up-to-date with CorkSport   


Compressor Wheel

CST6 Mazdaspeed Turbo

The compressor wheel utilized on the CST6 is well-known and trusted, GEN1 GTX76.  The GTX76 compressor is rated for 64 lb/min and is capable of boost pressures that will require a 4 bar MAP sensor upgrade.  Like the CST5, the compressor housing is a 4-inch inlet with anti-surge porting.

Ball Bearing Design for the Mazdaspeed Turbo

CST6 Turbo Backside

Unlike the CST4 and CST5, the CST6 Mazdaspeed Turbo uses a completely different CHRA and bearing system, and for good reason.  As the turbocharger wheel sizes increase so do the weight and potential boost pressure. This results in higher loads on the wheels, turbine shaft, and bearing system. To increase the durability and performance of the CST6, we opted to move from a conventional journal-bearing design to a more modern and robust ball-bearing design.  

The ball bearing system improves durability and stability for high horsepower/high boost operation along with improved spool and transient response.  Changing the CHRA did pose some new challenges, however. Ease of installation has always been a key feature with CorkSport products and that’s not lost with the CST6.  The CHRA has been modified to support the use of the OE oil drain line and all necessary oil feed components and coolant components are included for seamless installation.

Upgrade Your Turbo with the CST4

Turbo Compressor Wheel

CST6 Mazdaspeed Turbo Compressor Wheel

Like the CST5 Turbo, we’ve put a focus on the wheel size ratio and have validated its performance. The CST6 Performance Turbo uses the Gen1 GTX76 compressor wheel paired with the Garrett GT35 turbine wheel…aka GTX3576r.  This wheel combination provides us with a ratio of 1.12 which falls well within the rule of thumb discussed the in the past CST5 blog.

In testing, we found that increasing the size of the turbine wheel from a GT30 to a GT35 with the same GTX76 compressor wheel resulted in more top-end power and no penalty in spool time.  This combo also provided a good power delta from the CST5 to better provide an optimal power option for the community. Since then the CST6 has proven power at 600+whp at ~34-35psi and testing will continue past 40psi.  

External Wastegate

CST6 Turbine Wheel for Mazdaspeed

The initial testing of the CST6 Mazdaspeed turbo started with an internally wastegated turbine housing as that was the original goal with the CST5 and CST6.  However, it quickly became obvious that a turbocharger of this size and power potential could not be safely controlled with an internal wastegate.  The amount the wastegate port and “exhaust” or flow was not nearly adequate for proper boost control.

The boost would creep to nearly 26psi with no signs of tapering off.  Nevertheless, we continue testing knowing that auxiliary fueling was necessary.  Once the CST6 power and durability were validated we moved to design a turbine housing that could provide the necessary boost control and power potential.

Turbo Internal Wastegate Housing

Above is the removed CST6 internally waste-gated housing.  In our testing, we pushed the turbo to nearly 600whp with 40gph of methanol auxiliary fueling.  This amount of heat combined with a turbine housing that was literally being pushed to its limits resulted in a great learning experience.  As you can see, the turbine housing was cracking! The GT35 turbine wheel and power was just too much.

From this discovery and analysis, we developed the EWG turbine housing with the CST6 in mind.  The scroll size was increased, wall thickness increased in critical areas and the 44mm EWG port added.  

CST6 IWG vs EWG

With the use of the EWG turbine housing, boost control is now spot on and can easily control from spring pressure to an excess of 35+psi.  Stick around as we continue to push the limits of the CST6 Mazdaspeed Turbo as we continue testing and validation of the CorkSport V2 Intake Manifold w/Port Injection.  

Thanks for tuning in with CorkSport Mazda Performance.

-Barett @ CS

Connect with us:

You may also like

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

Mazda 6 2.5T Stock Spring Evaluation

Today we’re taking another dive into OEM Mazda parts to better understand how they function. Specifically, OEM suspension springs, since there are CorkSport Lowering Springs coming soon for the 2018+ Mazda 6 2.5T. While a simple concept, springs are very important to the handling, appearance, and comfort of your vehicle.

Mazda 6 back side  with lowering springs

The new Mazda 6 Turbo uses a lot of the same components as the GEN 3 Mazda 3 and Mazda 6, however, the suspension has been optimized for the new “premium” feel and to deal with the extra weight that comes when adding a turbo. The SkyActiv chassis has primarily remained the same though, with the same MacPherson strut front suspension and multi-link rear suspension shown below.

Mazda 6 suspension diagram

Now, onto the springs themselves; both the front and rear suspension of the Mazda 6 use standard compression springs. The spring’s job is to support the weight of the vehicle when at rest and adsorb impacts when hitting bumps or going quickly around a corner. That’s it. Seems simple enough right? Since the springs are the parts of the suspension that “suspends” the vehicle though, their characteristics and how they interact with the rest of the suspension system are critical.

Lowering springs design by CorkSport for Mazda 6

There are two main characteristics that define a spring: rate and free length. Both are pretty easy to understand. Free length is simply the length of the spring with no weight or force acting on it. So set a spring by itself on a table, measure how tall it is, and there’s your free length.

Spring rate is a little more complex, as it is the measure of how much weight it takes to compress a spring a given distance. So, if you have the same weight and put it on two different springs the one with the higher rate will compress less. The rate is usually measured in kg/mm (often shortened to K) or lbs/in.

For example, if you had a 2K spring and a 4K spring and applied 100kg to each, the 2K would compress 50mm and the 4K would only compress 25mm.

The spring view of the CorkSport Mazda springs

What do these measures mean for your car though? If we keep the rate the same but only change the free length, the shorter the spring, the lower the car. For a given car, a spring can be too short, causing poor ride (sitting on the bump stops all the time), or the risk of a spring coming out of place, causing noises or at worst, the spring falling out of the vehicle.

If we change the spring rate and leave the free length the same, things are a little more complicated. The higher the rate, the stiffer the ride is, plus your ride height will increase. Since the weight of the car is not changing, the higher rate spring will now compress less when the car sits on it, meaning your car sits higher at rest. Too large of a rate and your OEM shocks cannot keep up causing a bouncy ride, and vice-versa if too soft you are hitting bump stops over the smallest bump. Obviously, there is a balancing act to get the spring rate and free length correct for the application for the best in appearance, handling, and comfort.

Mazda 6 2.5L Turbo  with lowering springs

Now that the basics are covered, let’s look specifically at the Mazda 6 2.5T. The OEM springs give a good ride as to be expected (likely very soft spring rates) as this can be a huge issue for potential customers if the car ride quality is harsh. Handling is decent overall but has a few quirks. When going around a corner quickly, the car rolls over onto the rear springs excessively before settling and getting through the corner. When at the limit of traction, the car understeers severely, like most cars sold today.

Finally, the ride height is pretty high, likely to prevent any issue with driveways saying hello to the new front fascia. Interestingly, the MZ6T sits a little higher in the rear; we think it ensures enough suspension travel in case there’s a full load of passengers and a full trunk.

Side view of Mazdsa 6 Turbo lowering springs height

For further analysis, we also had the OEM springs tested for rate and ended up with the following: 3.05K front, 5.05K rear. While these numbers are fairly arbitrary right now, they are a necessary data point to have when designing lowering springs. These rates also contradict a very common misconception. Many people think that because there is less weight in the rear of a front-wheel drive car, the spring rates must be softer in the rear for a good ride & handling. This is simply not true in most cases, after all why would Mazda do the opposite? Due to the design of the rear suspension, the spring is basically being pushed on by a lever. This means the spring needs to be stiffer in order to support the same amount of weight as if the lever wasn’t there.

So overall, the OEM springs are good, but have plenty of room for improvement. I just touched the surface of suspension design and as we go through more of this project we’ll get into dampers, natural frequency, and much more. Stay tuned for more info and if you have any questions, don’t be afraid to ask! Check out the release blog for the Mazda 6 lowering springs.

-Daniel @ CorkSport

Connect with us

You may also like

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required

Inside look: CorkSport Mazdaspeed Turbo Design

The development and evolution of the CorkSport Performance CST5 and CST6 turbochargers are uniquely intertwined.   We’ll be honest, we started with the goal of a single larger turbo than the CST4 in mind, but as development progressed we were not getting the exact results we wanted. We wanted fast spool & transient response, huge power, and to retain the internal wastegate system.  Something had to give…we realized that we were asking too much from a single turbocharger, thus we redefined what we wanted and realized that two separate and focused turbochargers for the Mazdaspeed platform were the ideal choice.

CST5 Mazdaspeed Turbo Billet Compressor
CST5 Billet Compressor

Today we will focus on the design around the glorious CST5 Mazdaspeed Turbo, specifically the theory and design around the wheel selection for the CST5 and why it works.  

CST5 Wheel Design

CST5 Turbine for the Mazdaspeed turbo
CST5 Turbine

The compressor wheel utilized on the CST5 is the well-known and trusted GEN1 GTX71.  Compact and efficient, this compressor is rated for 56 lbs/min flow rate with a relatively high-pressure ratio threshold.  Paired with a 4-inch anti-surge compressor housing and we have a very versatile and responsive compressor setup.

Now here is where the design begins to deviate from the standard path.  The turbine wheel is an MHI TF06 design that is designed for high-performance applications.  The TF06 turbine wheel is the key to the performance of the CST5 Mazdaspeed Turbo. Let’s see how and why below.

If you are unsure of the turbine wheel size don’t worry, that will get covered shortly.  For comparison, the MHI TF06 is very similar in size to the well-known GT30, but there are a few very specific differences that affect performance.  

Turbine Blades

Turbine Blades Mazdaspeed Turbo
Turbine Blades

The first and most obvious difference is the number of turbine blades; this difference has a couple of benefits. First, less weight; even a small difference in weight can make a significant difference in the spool and transient response characteristics of the turbocharger.  Second, reduce flow restriction; with one less blade, the “open” area through the turbine wheel exducer is increased which increases the peak flow potential for top-end power.

Mazdaspeed Turbo Inducer & Exducer

Inducer & Exducer Comparison for the Mazdaspeed turbo and K04
Inducer & Exducer Comparison

Next, are the less obvious differences.  The GT30 has a 60mm inducer and 55mm exducer which equates to an 84trim turbine wheel vs the TF06 with a 61.5mm inducer and 54mm exducer which equates to a 77trim turbine wheel.   

There are two key values to pull from this:  First, the turbine wheel inducer directly relates to the peak flow of the wheel and the overall wheel size balance which we will cover next.  Second, the turbine wheel trim affects the spool and response characteristics of the turbocharger. The smaller the wheels trim the faster the spool and response.  

Size Matters in the Mazdaspeed Turbo

Mazdaspeed CST5 turbo Sizing
CST5 Sizing

Alright here is the most important and commonly overlooked aspect of a turbocharger.  There is a rule of thumb when sizing the compressor and turbine wheels for a turbocharger.  

If the turbine is too large then the turbocharger will be very “lazy” and have trouble building boost.  

If the turbine is too small then the compressor may be overpowering the turbine wheel causing excessive exhaust gas buildup that can rob power even though you may be running a very high boost pressure.  

So what is the right balance?  From our experience in turbocharger design, development and validation along with industry professionals we have consulted there is a rule of thumb we have found when sizing the compressor and turbine wheels.  The exducer of the compressor wheel should be 10-15% larger than the inducer of the turbine wheel as shown in the image above.

CST5 turbo for the Mazdaspeed

So why does this work?  Well, let’s look back a bit first.  Many think you can just install a larger and/or higher flowing compressor wheel onto the turbocharger to make more power.  Now that is true to a point, but quickly the approach becomes very inefficient for the engine. Forcing more air into the engine without improving the flow out of the engine can only go so far.  

Everything that goes into the engine must come out, right?  Increased A/R sizing and turbine wheel sizing is the key to exhausting all the gases from the engine efficiently, and efficiency is key to making power.

With both the CST5 and CST6 Turbo development we focused on the overall performance of the engine, not just the development of a high-performance turbocharger.  

Thanks for tuning in with CorkSport Mazda Performance, more to come…

-Barett @ CS

Connect with us

You may also like

Stay up-to-date on the latest news and product updates from CorkSport.

* indicates required