Product Release!! CORKSPORT 2010+ Mazda 3 Skyactiv Air Box for CorkSport SRI

Help limit your CorkSport Short Ram Intake from sucking in hot air with the CorkSport SkyActiv Cold Air Box for the 2010+ Mazda 3 Skyactiv. By coupling your Short Ram Intake with a cold air box, you will see the benefits of the intake system without the pressure drops inherent to longer tube intakes. Using the CorkSport Cold Air Box helps block hot air from the engine, while keeping open the access to cool air from the inner fender.  Our Cold Air Box has undergone extensive testing at various ambient air conditions to verify performance in all conditions.

CorkSport SkyActiv Airbox

Made of durable and lightweight FRP construction the CorkSport Mazda 3 SkyActiv Air box is strong and lightweight, but looks great under your hood. Simple instructions make the CorkSport SkyActiv Air box easy to be installed by anyone with a CorkSport Short Ram Intake. With the SkyActiv Airbox your intake will stay cooler, which means your engine will run better. Whether you sit in a lot of traffic, live in a hot climate, or simply have noticed too much heat-soak, the SkyActiv Air box is the solution to loss of power due to high under hood temperatures.

SkyActiv-Airbox-Installed

 

The CorkSport 2010+ Mazda 3 Skyactiv Air Box for CorkSport SRI is available at our online catalog for only $99.99 and is ready to ship now. For more information please visit our product listing at:https://www.corksport.com/corksport-2010-mazda-3-skyactiv-air-box-for-corksport-sri.html

Fuel Pump Comparison Part 3

Welcome back to the Fuel Pump Comparison, Part 3. If you haven’t been following along with us feel free to read Part 1 and Part 2

Corksport dyno testing of fuel pumps for Mazdaspeed 3

Now that we have a good understanding of the basics for these high pressure fuel pumps we can start to really dig deeper into the specifications. One of the items we were really curious about were the materials used in the construction of these pumps. We decided to have the hardness tested and ascertain the materials used. The factory pump internals do not use any coating, the hardness test showed us that the internals went through a hardening process as the core was significantly softer than the surface. Because of these hardness requirements, many other aftermarket internals use a coating of some sort to decrease friction between the piston and the sleeve. As for what the stock internals are made from, we answered that. Except for the hardening procedure, according to their chemical breakdown, they match a common die steel, so nothing too fancy.

corksport

Corksport

 

We now understand why it is so common to hear that the factory pumps are machined to such tight tolerances. At high rates of speed and pressure with a hardened material, you could easily have failures if tolerances were not correct.

When testing the fuel pumps on the dyno, we chose a Mazdaspeed 3 (2nd gen) with bolt-ons and a stock turbo. The factory boost levels we maintained 1700psi all the way to redline with no issues. As soon as we raised the boost slightly, the fuel pump began to drop pressure. With a Cobb AccessPort and a stage 2 reflash, the pressure of the pump would drop under 1000psi by 5000rpms. If you’re going to turn up the boost or run a reflash, an upgraded fuel pump is a must.

dyno results for different fuel pumps on mazdaspeed 3

Our dyno is able to adjust load, so in our testing we chose a load value typical of 4th gear on the street and tested all pumps with the same load on the same day, only hours apart from each other. All the pumps tested performed very similar for power but the stock pump actually ran a lower air/fuel ratio. This is because all of the pumps were tested with no tune. When we changed to the Cobb stage 2 map, the power levels increased but we could not complete the test with the stock pump as it just could not keep up with the demand. With the stage 2 tune, we found the air/fuel ratios to be very, very rich and had a very real possibility for causing high load misfires. We actually experienced that several times on colder days. With no tune, this does not happen but the car did still run very rich in boost with all the aftermarket fuel pumps. With a custom tune though, there should be no difference between the pumps and you can raise the boost without worry of running low on pressure.

Now that you have read Part 3, see Part 1 and Part 2.

Stay tuned for part 4 in our fuel pump comparison series, things are about to really heat up!!!

Inside the upcoming CorkSport Blow Off Valve

When you look at the blow off valves (BOV) and bypass valves (BPV) on the market today you see many examples of the same thing with little to no innovations. For those of you that aren’t aware, BOV’s and BPV’s are valves that vent pressurized air in the tract between the turbo and the throttle body. This prevents the turbo from suddenly stopping or slowing as those can cause unwanted bearing wear on the turbo. A BOV vents this pressurized air into the atmosphere (into the engine bay). A BPV vents that air back into the intake just after the mass air flow (MAF) sensor. Venting back into the intake allows the ECU to correctly meter that air that it has already accounted for. Many times when venting to atmosphere you can get a momentarily rich condition because the ratios are off.

We were talking about innovation though, the last great innovation in valve technology for turbos was probably years ago with pull type valves like the SSQV from HKS. Many years have passed since then and not much has changed, outside of the few valves that partially vent to atmosphere and route the rest back to the intake tract. Typically now you just see one copy after another of someone else’s idea. SURE, it can be hard to innovate in the blow off valve market but we were convinced there was something exciting we could do.

We speak often about your ideas sparking our innovative minds, this project was started by just one of those customer suggestions. We started with a customer submission of using wave springs that led us to design a new valve design to reduce the size and weight of the moving parts.

Key Features of the upcoming patent pending CorkSport Blow Off Valve:

Reduction of spring height  Corksport Blow off valve 1

With the use of a wave spring we are able to reduce the spring height by 50%. The traditional spring sits at 40mm and the CS wave spring sits at a 20mm height. These springs both provide the same force and will move the same distance before experiencing coil-bind.

Reduction of piston size

Corksport blow off valve 2

Because the spring is 50% smaller we are able to reduce the piston and still maintain the same amount of movement. As you can see, just changing to the wave spring we were able to decrease the piston by 33%!!!

What does that all mean?

The reduction in mass is all well and good, but just being smaller isn’t the only benefit (even though that is pretty cool). With the force (F) being the same and the mass (m) decreasing by 33% we can see how the mass relates to acceleration (a) in the formula F=ma. Rearranged, this becomes a=F/m. This means we have accelerated the actual speed of the valve, which means the valve is able to react much faster than a larger valve with a traditional spring (33% faster!) Because the blow off valve is a safety feature to protect the turbo from premature wear, this increase in acceleration can help increase the longevity of the turbo and the system as a whole.

What does all this innovation look like?

Corksport Blow off valve 3

With the reduction in the size of these key parts, we can reduce the body size. This can be especially helpful in situations with airboxes, custom turbo and intercooler kits or even in universal situations where space is at a premium. Below you can see a comparison of similar BOV’s, the spring chamber on our design is significantly smaller but the function is not lost; in fact, we improved it!

Corksport blow off valve 4

To maximize flow, we pushed the piston area out to ensure a larger venting area, this reduces the time it takes to vent the air and allows larger turbos to vent more efficiently. As a blow off valve, this certainly pushes the envelope, we think we can find even more applications for this kind of innovation. We are very proud to be able to offer things for the Mazda market we helped create and will continue to engineer parts that push the scene for you.

The Summer of CorkSport

CorkSport Mazdaspeed6 Rear Diff Mount

At CorkSport we are working hard on innovative new products. We know that you want to see parts that push the envelope and make you excited. We strive to be the go to source for everything you do to your Mazda, and to do that, we are working on new exciting products that the other guys aren’t going to be able to copy. With our team of engineers and our experience as the #1 Mazda performance company we are working tirelessly to bring out the best products on the market this year.

CorkSport Big Intake Battery Box

We’re calling it: “The Summer of CorkSport” and you’re invited. In the coming months you will be seeing some of the most exciting and inventive parts available on the Mazda market. We’ve reached out to you, asked questions, found needs and we’ve listened to make these parts a reality for you. Stay tuned for the next few months to see the most releases the Mazda community has ever seen in one year from any company.

CorkSport Mazdaspeed Big Brakes

Also, make sure your voice is heard by visiting our website and submitting your own product idea!!! https://www.corksport.com/product-ideas.html

Fuel Pump Comparison Part 2

In part 1 we discussed fuel pumps, their uses and what’s inside them. Now we can talk a little about what goes into making them and what the differences are.

 

CorkSport Fuel Pump Comparison

CorkSport Fuel Pump Comparison

 

Does size matter? When looking at the stock piston on the factory fuel pump you can sure say that it does matter. If you increase the piston diameter you increase the flow of the pump. We have decided to compare the similar internals first and then compare the APR pump afterwards. The Autotech/KMD internals use the same diameter piston head. At 9.8mm compared to the factory 8.0mm. When comparing the volume area they are both about 50% improvement with the KMD edging out the Autotech by a  marginal amount. This slight edge comes from the shape of the end of the shaft being slightly different. The Autotech looks more like a piston from an internal combustion engine where the KMD is very similar to the factory design at the end. Because these are the older version of the KMD internals they are coated differently. They look to be a TiCN coating but we can’t say for sure. The Autotech internals are listed as a DLC coating which stands for Diamond Like Carbon. The newer KMDs are now PVD coated (Physical Vapor Deposition).

 

CorkSport Fuel Pump Comparison

 

When we start comparing the sleeves that the piston rides in we notice they are all similar in shape and size. The Autotech has a coated sleeve that appears to be some sort of tool steel. The factory is uncoated and appears to be tool steel. The KMD is uncoated and appears to be stainless of some variety. Internally there is a relief cut that is ~3 times larger on the aftermarket internals which should help with the 50% improvement in flow. The sleeve shows the constraints for why you can not go much larger than the 9.8mm piston. The end that fits in the factory pump can only be so large and the wall thickness must maintain a certain size or failure will be imminent.

 

CorkSport Fuel Pump Comparison

 

For a long time the CP-E pump was rumored to be made by APR. The CP-E pump we ordered actually came with an APR sticker on the side of it. Oops. We quickly disassembled it and documented the findings. The pump uses a 9.5mm piston which is smaller then the two internal only options. APR claims 40% improvement and we calculated about a 41% improvement so no issues there. They also chose a Stainless steel sleeve and DLC coating on the piston. The big difference comes when you look in the cap. They machine in an extra Seal to help with the oil deposit issue. Is this needed?  We aren’t sure yet but it is an interesting addition.

 

CorkSport Fuel Pump Comparison

 

Now for the one big addition that only one manufacturer saw fit to think about. APR added a spring that increases the ability to return the piston. This can be very important for wear on the cam shaft if you get any float from the spring at higher RPM’s; the more the pump worked, the more important this would be. Remember that the cam has three lobes on it so even though the cams spin at half the speed of the crank the pump spins at three times that of the cam. This makes a 1.5 times the crank difference. So what ever the RPM you are at the pump is at 1.5 times that. At a 8000rpm redline the pump is going 12000rpms.  The pump also has to draw in 40-50% more fluid so a return spring plays apart in that as well.

 

CorkSport Fuel Pump Comparison

 

Next time we will get these pumps on the dyno and check out how the hold pressures at the same load. Luckily we have an in house dyno that can vary load and the ability to log pressures.