CorkSport CST6

Testing & Validation of the CorkSport CST6

As we get closer and closer to announcing the launch of the new CorkSport Turbo Line-Up we want to share the testing and validation we put our turbos through.  You may not realize it, but we’ve already shared a lot about the CST6 without really saying so, check out Barett’s Built Gen1 Here.  

So we’ve talked a bit about the design intent behind the CST6; defining the wheel sizes, wheel size ratio, and the ball bearing CHRA.   If you’ve seen the teaser listing then you’ve already seen the 633 whp dyno graph, so we’ll look at the data to support it!

The First Look at the CST6 Performance

CorkSport CST6 dyno at 28psi
CST6 running at 28PSI

First let’s look at the CST6 at a more moderate boost pressure.  Above are the results of back-to-back testing comparing the XS-Power V3 Exhaust Manifold and the upcoming CorkSport Cast Exhaust Manifold.  All dyno runs were performed with the same 28 psi peak pressure tune.

So the exhaust manifold testing is exciting, but it’s not what we’re here to discuss.   What I want you to know is that the CST6 is fully capable of providing mid-500 whp power at 28 psi.   While we have and will continue to push the CST6 to its max ability, the 27-30 psi range has proven to be a sweet and efficient spot for the CST6.

Testing the Limits on the CST6

CorkSport CST6 Dyno Graph running 34psi
CST6 running at 34PSI

Searching for the limits with the current fuel system we can easily push past the 600 whp mark plus some.   The efficiency of the CST6 at this power level is still very strong and the turbo continues to pull through the RPM range.   What really makes the CST6 shine is the power under the curve. This is a BIG turbo and will respond like one, but the loss of early spool is easily compensated for with the abundant power curve and power that carries past 7500 rpm.  

It’s important to note that testing for the CST6 is not finished because we are currently limited by the fuel system on the vehicle.   The current fuel system is OE DI injectors paired with a boost based methanol system flowing 40 gph peak. In the near future, we will continue finding the limits of the CST6 with a true port injection system and Split-Second controller flowing E85.   This will give us headroom for 8000+ rpm and boost levels past 34 psi (let’s see what 40 psi give us!).

Looking at the CST6 Data Log

CorkSport CST6 Data Log
MAF Voltage and Actual AFR of the CST6

This is a datalog form the 633 whp dyno run and was recorded on the chassis dyno.   Because of that, it is not a perfect example of street driving… let me explain why. The dyno dynamics chassis CorkSport uses can control load and thus the rate at which the engine can rev through the RPM range.   In order for us to dyno a vehicle at this power level safely, we need to find the right ramp rate for low RPM and high RPM. The biggest factor this affects is the spool RPM of the turbo.

On the graph I marked ~200 rpm shifted to the left for the boost curve.   On the street, the CST6 spools about 200 rpm sooner due to the higher load on the street vs the dyno.   This puts the CST6 @ 20 psi around 3800-3900 rpm.

Also shown on the graph are MAF voltage and actual AFR.   Both of these are important because they provide real data about how the vehicle is being tuned.

Target AFR is set for 11.76 which is neither rich nor aggressive for this setup.  The slight up and down of the AFR curve from 3500-4000 rpm is due to the very high amount of auxiliary methanol starting to spray along with the DI injectors.

Looking at MAF voltage you can see us get well past 4.50v.  Actually, we are consistently seeing MAF Voltage around 4.65-4.70v using the CorkSport 3.5” Intake which has a true ID of 3.50”.  This is just further validation that the CST6 is flowing enough air to support 600+ whp.

There’s more to come from the new CorkSport turbo lineup so stay tuned for more info on the CST5, CST6, and EWG housings.

-Barett @ CorkSport

Leave a Reply

Your email address will not be published. Required fields are marked *